
MoSS:
Modular Security Specifications Framework

Amir Herzberg1, Hemi Leibowitz2, Ewa Syta3, and Sara Wrótniak1

1 Dept. of Computer Science and Engineering, University of Connecticut, Storrs, CT
2 Dept. of Computer Science, Bar-Ilan University, Ramat Gan, Israel

3 Dept. of Computer Science, Trinity College, Hartford, CT

Abstract. Applied cryptographic protocols have to meet a rich set of
security requirements under diverse environments and against diverse
adversaries. However, currently used security specifications, based on ei-
ther simulation [11,28] (e.g., ‘ideal functionality’ in UC) or games [8,30],
are monolithic, combining together different aspects of protocol require-
ments, environment and assumptions. Such security specifications are
complex, error-prone, and foil reusability, modular analysis and incre-
mental design.
We present the Modular Security Specifications (MoSS) framework, which
cleanly separates the security requirements (goals) which a protocol should
achieve, from the models (assumptions) under which each requirement
should be ensured. This modularity allows us to reuse individual models
and requirements across different protocols and tasks, and to compare
protocols for the same task, either under different assumptions or sat-
isfying different sets of requirements. MoSS is flexible and extendable,
e.g., it can support both asymptotic and concrete definitions for security.
So far, we confirmed the applicability of MoSS to two applications: secure
broadcast protocols and PKI schemes.

1 Introduction

Precise and correct models, requirements and proofs are the best way to ensure
security. Unfortunately, it is hard to write them, and easy-to-make subtle errors
often result in vulnerabilities and exploits; this happens even to the best cryp-
tographers, with the notable exception of the reader. Furthermore, ‘the devil
is in the details’; minor details of the models and requirements can be very
significant, and any inaccuracies or small changes may invalidate proofs.

This article is based on an earlier article: Herzberg A., Leibowitz H., Syta E.,
Wrótniak S. (2021) MoSS: Modular Security Specifications Framework. In: Malkin
T., Peikert C. (eds) Advances in Cryptology – CRYPTO 2021. CRYPTO 2021.
Lecture Notes in Computer Science, vol 12827. Springer, Cham., ©IACR 2021
https://doi.org/10.1007/978-3-030-84252-9_2.

https://doi.org/10.1007/978-3-030-84252-9_2

Provable security has its roots in the seminal works rigorously proving secu-
rity for constructions of cryptographic primitives, such as signature schemes [18],
encryption schemes [17] and pseudorandom functions [16]. Provable security un-
der well-defined assumptions is expected from any work presenting a new design
or a new cryptographic primitive. With time, the expectation of a provably-
secure design has also extended to applied cryptographic protocols, with semi-
nal works such as [4, 7]. After repeated discoveries of serious vulnerabilities in
‘intuitively designed’ protocols [15], proofs of security are expected, necessary
and appreciated by practitioners. However, provable security is notoriously chal-
lenging and error-prone for applied cryptographic protocols, which often aim to
achieve complex goals under diverse assumptions intended to reflect real-world
deployment scenarios. In response, we present the MoSS framework.

MoSS: Modular Security Specifications. In MoSS, a security specifica-
tion includes a set of models (assumptions) and specific requirements (goals);
models and requirements are defined using predicates and probability functions.
By defining each model and requirement separately, we allow modularity, stan-
dardization and reuse. This modularity is particularly beneficial for applied pro-
tocols, due to their high number of requirements and models; see Figure 1.

Execution process Models (assumptions) Requirements (goals)

Private channels (§2.3)

- Sec-in

Corruptions (§2.3)

- Get-State

- Set-State

- Set-Output

(others)

Confidentiality (§4.3.1)

- Flip

- Challenge

- Guess

(others)

CS Compiler (§7.1)

- Concrete security

- Polytime interactions

Adversary model (capabilities)

- MitM/Eavesdropper

- Byzantine/Honest-but-Curious/Fail-Stop

- Faulty (§D.1.1)/Threshold (§D.1.2) /proactive

- Polytime interactions (§7.3)

(others)

Communication model

- Authenticated (§D.1.3) / Unauthenticated

- Bounded (§D.1.3) / Fixed delay

- Reliable / Unreliable

- FIFO / Non-FIFO

(others)

Clocks

- Bounded-drift (§3.3)

- ∆-Wakeup (§D.1.4)

- Synchronized

- (others)

Secure keys

initialization

- Shared (§D.1.5)

- Public [25]

(others)

Generic requirements

- Indistinguishability (§4.3.2)

- No false positive (§D.2.2)

- Verifiable attribution (§D.2.1)

(others)

PKI requirements [25]

- Revocation status accountability

- Accountability

- Transparency (§6.2)

- Revocation status transparency

- Non-equivocation prevention / detection

- Privacy

(others)

Broadcast requirements (§6.1)

- Authenticated broadcast (§C.3.1)

- Confidential broadcast

(others)

Fig. 1: The MoSS framework allows security to be specified modularly, i.e., ‘à la carte’,
with respect to a set of individually-defined models (assumptions), requirements (prop-
erties/goals) and even operations of the execution process. Models, requirements and
operations defined in this paper or in [19, 25] are marked accordingly. Many models,
and some (‘generic’) requirements, are applicable to different types of protocols.

MoSS also includes a well-defined execution process (Figure 2 and Algo-
rithm 1), as necessary for provable security. For simplicity, the ‘core’ execution

2

process is simple, and supports modular extensions, allowing support for some
specific features which are not always needed. Let us now discuss each of these
three components of MoSS in more detail.

Models are used to reflect different assumptions made for a protocol, such as
the adversary capabilities, communication (e.g., delays and reliability), synchro-
nization, initialization and more. For each ‘category’ of assumptions, there are
multiple options available: e.g., MitM or eavesdropper for the adversary model;
threshold for the corruption model; asynchronous, synchronous, or bounded de-
lay for the communication delays model; or asynchronous, synchronous, syn-
tonized, or bounded drift for the clock synchronization model. Often, a model
can be reused in many works, since, in MoSS, each model is defined indepen-
dently of other models and of requirements, as one or more pairs of a small
predicate (‘program’) and a probability function. This approach facilitates the
reuse of models and also makes it easier to write, read and compare differ-
ent works. For example, many protocols, for different tasks, use the same clock
and communication models, e.g., synchronous communication and clocks. At the
same time, protocols for the same task may use different models, e.g., bounded
delay communication and bounded drift clocks.

Requirements refer to properties or goals which a protocol aims for. Protocols
for the same problem may achieve different requirements, which may be com-
parable (e.g., equivocation detection vs. equivocation prevention) or not (e.g.,
accountability vs. transparency). While many requirements are task specific,
some generic requirements are applicable across different tasks; e.g., a no false
positive requirement to ensure that an honest entity should never be considered
‘malicious’ by another honest entity.

Execution process. MoSS has a well-defined execution process (see Figure 2
and Algorithm 1) which takes as input a protocol to execute, an adversary,
parameters and a set of execution operations. The execution operations allow
customized extensions of the execution process, i.e., they enhance the basic exe-
cution process with operations which may not always be required. We use these
additional operations to define specifications such as indistinguishability, shared-
key initialization and entity corruptions.

Related work. A significant amount of work in applied cryptography is
informally specified, with specifications presented as a textual list of assumptions
(models) and goals (requirements). Obviously, this informal approach does not
facilitate provable security. For provable security, there are two main approaches
for defining security specifications: simulation-based and game-based.

The simulation-based approach, most notably Universal Composability (UC)
[11, 12], typically defines security as indistinguishability between executions of
the given protocol with the adversary, and executions of an ‘ideal functional-
ity’, which blends together the model and requirements, with a simulator. There
are multiple extensions and alternatives to UC, such as iUC, GNUC, IITM and
simplified-UC [10, 21, 23, 31], and other simulation-based frameworks such as
constructive cryptography (CC) [27, 28] and reactive systems [1]. Each of these
variants defines a specific, fixed execution model. An important reason for the

3

Specifications
Approach

Exec Process Models Requirements

Multiple

specifications

Prov.-secure

composition

Informal - List List Yes No

Game-based Game per goal; models are part of game Yes No

Simulation-based Fixed Indistinguishable from Ideal Functionality No Yes

MoSS Extensible List List Yes No

Table 1: A comparison of different approaches to security specifications. An exe-
cution process defines executions (runs). A protocol aims to satisfy certain require-
ments assuming certain models. Simulation-based specifications, such as UC [12], en-
sure provably-secure composition of protocols but do not allow one protocol to meet
multiple separately-defined specifications. Some tasks, e.g. zero-knowledge, may only
have simulation-based specifications.

popularity of the simulation-based approach is its support for secure composi-
tion of protocols; another reason is the fact that some important tasks, e.g.,
zero-knowledge (ZK), seem to require simulation-based definitions. However, for
many tasks, especially applied tasks, game-based definitions are more natural
and easier to work with.

The game-based approach [8,20,30] is also widely adopted, especially among
practitioners, due to its simpler, more intuitive definitions and proofs of security.
In this approach, each requirement is defined as a game between the adversary
and the protocol. The game incorporates the models, the execution process, and
the specific requirement (e.g., indistinguishability). However, the game-based
approach does have limitations, most notably, there is no composition theorem
for game-based specifications and it may be inapplicable to tasks such as zero-
knowledge proofs and multi-party computation.

Both ‘game-based’ and ‘simulation-based’ security specifications are mono-
lithic: an ideal functionality or a game, combining security requirements with
different aspects of the model and the execution process. Even though differ-
ent requirements and models are individually presented in their informal de-
scriptions, the designers and readers have to validate directly that the formal,
monolithic specifications correctly reflect the informal descriptions.

Such monolithic specifications are not a good fit for analysis of applied pro-
tocols, which have complex requirements and models, and it stands in sharp
contrast to the standard engineering approach, where specifications are gradu-
ally developed and carefully verified at each step, often using automated tools.
While there exist powerful tools to validate security of cryptographic proto-
cols [2], there are no such tools to validate the specifications.

We began this work after trying to write simulation-based as well as game-
based specifications for PKI schemes, which turned out to be impractical given
the complexity of realistic modeling aspects; this motivated us to develop mod-
ular security specifications, i.e., MoSS.

In Table 1, we compare MoSS to game-based and simulation-based security
specifications. The advantage of MoSS is its modularity; a security specification

4

consists of one or more models, one or more requirements and, optionally, some
execution process operations. Each model and requirement is defined indepen-
dently, as one or more pairs of a small predicate (which is, typically, a simple pro-
gram) and a probability function. Models are often applicable to different tasks,
and some requirements are generic and apply to multiple tasks. This modular ap-
proach allows to reuse models and requirements, which makes it easier to write,
understand and compare specifications. For example, in Appendix C, we present
a simplified instance of an authenticated-broadcast protocol assuming (well-
defined) bounded delay and bounded clock drift models.Appendix Dincludes
more models and requirements. The same models are used for PKI schemes
in [25].

The use of separate, focused models and requirements also allows a gradual
protocol development and analysis. To illustrate, we first analyze the authenticated-
broadcast protocol assuming only a secure shared-key initialization model, which
suffices to ensure authenticity but not freshness. We then show that the proto-
col also achieves freshness when we also assume bounded clock drift. Lastly, we
show that by additionally assuming bounded-delay communication, we can en-
sure a bounded delay for the broadcast protocol. This gradual approach makes
the analysis easier to perform and understand (and to identify any design flaws
early on), especially when compared to proving such properties using monolithic
security specifications (all at once). Using MoSS is a bit like playing Lego with
models and requirements!

Concrete security [5] is especially important for protocols used in practice as it
allows to more precisely define security of a given protocol and to properly select
security parameters, in contrast to asymptotic security. Due to its modularity,
MoSS also supports concrete security in a way we consider simple and even
elegant; see Section 7.2.

Ensuring polytime interactions. As pointed out in [11, 22], the ‘classical’ no-
tion of PPT algorithms is not sufficient for analysis of interactive systems, where
the same protocol (and adversary) can be invoked many times. This issue is
addressed by later versions of UC and in some other recent frameworks, e.g.,
GNUC [21]. The extendability of MoSS allows it to handle these aspects rela-
tively simply; (see Section 7.3 and Appendix B).

Modularity lemmas. In Section 5, we present several asymptotic security mod-
ularity lemmas, which allow combining ‘simple’ models and requirements into
composite models and requirements, taking advantage of MoSS’s modularity.
We provide proofs and corresponding concrete security modularity lemmas in
Appendices E and F.

Limitations of MoSS. Currently, MoSS has two significant limitations:
the lack of computer-aided tools, available for both game-based and simulation-
based approaches [2,3,9,29], and the lack of composability, an important property
proven for most simulation-based frameworks, most notably UC [11].

We believe that MoSS is amenable to computer-aided tools. For example, a
tool may transform the modular MoSS security specifications into a monolithic
game or an ideal functionality, allowing to use the existing computer-aided tools.

5

However, development of such tools is clearly a challenge yet to be met. Another
open challenge is to prove a composability property directly for MoSS security
specifications, or to provide (MoSS-like) modular specifications for UC and other
simulation-based frameworks.

It is our hope that MoSS may help to bridge the gap between the theory
and practice in cryptography, and to facilitate meaningful, provable security for
practical cryptographic protocols and systems.

Real-world application of MoSS: PKI. Public Key Infrastructure (PKI)
schemes, a critical component of applied cryptography, amply illustrate the chal-
lenges of applying provable security in practice and serve as a good example of
how MoSS might benefit practical protocols. Current PKI systems are mostly
based on the X.509 standard [14], but there are many other proposals, most no-
tably, Certificate Transparency (CT) [24], which add significant goals and cryp-
tographic mechanisms. Realistic PKI systems have non-trivial requirements; in
particular, synchronization is highly relevant and needed to deal with even such
basic aspects as revocation.

Recently, we presented the first rigorous study [25] of practical4 PKI schemes
by using MoSS. Specifically, we defined model and requirement predicates for
practical PKI schemes and proved security of the X.509 PKI scheme. The analy-
sis uses the bounded-delay and bounded-drift model predicates; similarly, follow-
up work is expected to reuse these models and requirement predicates to prove
security for additional PKI schemes, e.g., Certificate Transparency.

Organization. Section 2 introduces Exec, the adversary-driven execution
process. Section 3 and Section 4 present models and requirements, respectively,
and App. D describes several additional examples of useful models and require-
ments. Section 5 presents modularity lemmas. Section 6 shows how to apply
MoSS to two different applications, a simplified authenticated broadcast proto-
col, further described in App. C, and PKI schemes. Section 7 describes extensions
of the framework to achieve concrete security and to ensure polytime interac-
tions, with additional details in App. B. We conclude and discuss future work
in Section 8.

2 Execution Process

A key aspect of MoSS is the separation of the execution process from the model
M under which a protocol P is analyzed, and the requirementsR that define P’s
goals. This separation allows different model assumptions using the same execu-
tion process, simplifying the analysis and allowing reusability of definitions and
results. In this section, we present MoSS’s execution process, which defines the
execution of a given protocol P ‘controlled’ by a given adversary A. We say that
it is ‘adversary-driven’ since the adversary controls all inputs and invocations of
the entities running the protocol.

4 Grossly-simplified PKI ideal functionalities were studied, e.g., in [21], but without
considering even basic aspects such as revocation and expiration.

6

2.1 ExecA,P : An Adversary-Driven Execution Process

The execution process ExecA,P(params), as defined by the pseudo-code in Al-
gorithm 1 and illustrated in Fig. 2 (see also a more elaborate illustration in
Fig. 3 in App. A), specifies the details of running a given protocol P with a
given adversary A, both modeled as efficient (PPT) functions, given parameters
params. Note that the model M is not an input to the execution process; it is
only applied to the transcript T of the protocol run produced by ExecA,P , to
decide if the adversary adhered to the model, in effect restricting the adversary’s
capabilities. ExecA,P allows the adversary to have an extensive control over the
execution; the adversary decides, at any point, which entity is invoked next, with
what operation and with what inputs.

Exec

Initialize
adversary

Initialize
parties

Receive
instruction

Execute
instruction

Continue? No

Yes

Adversary A

Parties

Party i · · ·· · ·Party 1 Party n

params N, sA,
params.P[·] sA

ent, opr, inp,
clk, τ

sA, out sA, outA,F

(∀i ∈ N) :
params.P[i]

(∀i ∈ N) :
si

opr, sent,
inp, clk

sent, out

T ←


outA, e,N,F,

ent[·], opr[·], inp[·],
clk[·], τ [·], out[·],
params.P[·],
sIn[·], sOut[·]



params

Fig. 2: A high level overview of MoSS’s execution process showing the interac-
tions between the parties to the protocol and the adversary in ExecA,P . (Note:
e, in the final execution transcript T , is the total number of iterations of the
loop.)

Notation. To allow the execution process to apply to protocols with mul-
tiple functions and operations, we define the entire protocol P as a single PPT
algorithm and use parameters to specify the exact operations and their inputs.
Specifically, to invoke an operation defined by P over some entity i, we use the
following notation: P[opr](s, inp, clk), where opr identifies the specific ‘opera-
tion’ or ‘function’ to be invoked, s is the local state of entity i, inp is the set
of inputs to opr, and clk is the value of the local clock of entity i. The output
of such execution is a tuple (s′, out), where s′ is the state of entity i after the
operation is executed and out is the output of the executed operation, which
is made available to the adversary. We refer to P as an ‘algorithm’ (in PPT)
although we do not consider the operation as part of the input, i.e., formally,
P maps from the operations (given as strings) to algorithms; this can be inter-

7

preted as P accepting the ‘label’ as additional input and calling the appropriate
‘subroutine’, making it essentially a single PPT algorithm.

Algorithm 1 uses the standard index notation to refer to cells of arrays. For
example, out[e] refers to the value of the eth entry of the array out. Specifically,
e represents the index (counter) of execution events. Note that e is never given
to the protocol; every individual entity has a separate state, and may count
the events that it is involved in, but if there is more than one entity, an entity
cannot know the current value of e - it is not a clock. Even the adversary does
not control e, although, the adversary can keep track of it in its state, since it is
invoked (twice) in every round. Clocks and time are handled differently, as we
now explain.

In every invocation of the protocol, one of the inputs set by the adversary
is referred to as the local clock and denoted clk. In addition, in every event,
the adversary defines a value τ which we refer to as the real time clock. Thus,
to refer to the local clock value and the real time clock value of event e, the
execution process uses clk[e] and τ [e], respectively. Both clk and τ are included
in the transcript T ; this allows a model predicate to enforce different synchro-
nization models/assumptions - or not to enforce any, which implies a completely
asynchronous model.

Algorithm 1 Adversary-Driven Execution Process ExecA,P(params)

1: (sA,N, params.P[·])← A[‘Init’](params) . Initialize A with params

2: ∀i ∈ N : si ← P[‘Init’] (⊥, params.P[i],⊥) . Initialize entities’ local states

3: e← 0 . Initialize loop’s counter

4: repeat

5: e← e+ 1 . Advance the loop counter

6: (ent[e], opr[e], inp[e], clk[e], τ [e])← A(sA) .

A selects entity ent[e], opera-
tion opr[e], input inp[e], clock
clk[e], and real time τ [e] for
event e

7: sIn[e]← sent[e] . Save input state

8:
(
sent[e], out[e]

)
← P [opr[e]]

(
sent[e], inp[e], clk[e]

)
9: sOut[e]← sent[e] . Save output state

10: (sA, outA, F)← A (sA, out[e]) .
A decides when to terminate
the loop (outA 6= ⊥), based on
out[e]

11: until outA 6= ⊥

12: T ←
(
outA, e,N, F, ent[·], opr[·], inp[·], clk[·], τ [·], out[·], params.P[·], sIn[·], sOut[·]

)
13: Return T . Output transcript of run

Construction. The execution process (Algorithm 1) consists of three main
components: the initialization, main execution loop and termination.

8

Initialization (lines 1-3). In line 1, we allow the adversary to set their state
sA, to choose the set of entities N, and to choose parameters params.P[i] for
protocol initialization for each entity i ∈ N. Note that each params.P[i] can
include all of the parameters params given to the execution process, some of
the parameters from params, or entirely different parameters, chosen by the
adversary; however, the allowed values of params.P[·] (including their relation
to params) can be restricted using models (see Sec. 3), since the values set by
the adversary are returned in the transcript T (lines 12-13). In line 2, we set the
initial state si for each entity i by invoking the protocol-specific ‘Init’ operation
with input params.P[i]; note that this implies a convention where protocols are
initialized by this operation - all other operations are up to the specific protocol.
The reasoning behind such convention is that initialization is an extremely com-
mon operation in many protocols; that said, protocols without initialization can
use an empty ‘Init’ operation and protocols with a complex initialization process
can use other operations defined in P in the main execution loop (lines 4-11), to
implement an initialization process which cannot be performed via a single ‘Init’
call. In line 3, we initialize e, which we use to index the events of the execution,
i.e., e is incremented by one (line 5) each time we complete one ‘execution loop’
(lines 4-11).

Main execution loop (lines 4-11). The execution process affords the adversary
A extensive control over the execution. Specifically, in each event e, A determines
(line 6) an operation opr[e], along with its inputs, to be invoked by an entity
ent[e] ∈ N. The adversary also selects τ [e], the global, real time clock value.
Afterwards, the event is executed (line 8). The entity’s input and output states
are saved in sIn[e] and sOut[e], respectively (lines 7 and 9), which allows models
to place restrictions on the states of entities.

In line 10, the adversary processes the output out[e] of the operation opr[e].
The adversary may modify its state sA, and outputs a value outA; when outA 6=
⊥, the execution moves to the termination phase; otherwise the loop continues.

Termination (lines 12-13). Upon termination, the process returns the exe-
cution transcript T (line 13), containing the relevant values from the execution.
Namely, T contains the adversary’s output outA, the index of the last event e,
the set of entities N, and the set of faulty entities F (produced in line 10), the val-
ues of ent[·], opr[·], inp[·], clk[·], τ [·] and out[·] for all invoked events, the protocol
initialization parameters params.P[·] for all entities in N, and the entity’s input
state sIn[·] and output state sOut[·] for each event. We allow A to output F to
accommodate different fault modes, i.e., an adversary model can specify which
entities are included in F (considered ‘faulty’) which then can be validated using
an appropriate model.

2.2 The Extendable Execution Process

In Section 2.1, we described the design of the generic ExecA,P execution process,
which imposes only some basic limitations. We now describe the extendable ex-
ecution process ExecXA,P , an extension of ExecA,P , which provides additional

9

flexibility with only few changes to ExecA,P . The extendable execution pro-

cess ExecXA,P allows MoSS to (1) handle different kinds of entity-corruptions
(described next) and (2) define certain other models/requirements, e.g., indis-
tinguishability requirements (Section 4.3); other applications may be found.

The ExecXA,P execution process, as defined by the pseudo-code in Algo-
rithm 2, specifies the details of running a given protocol P with a given adversary
A, both modeled as efficient (PPT) functions, given a specific set of execution
operations X and parameters params. The set5 X is a specific set of extra oper-
ations through which the execution process provides built-in yet flexible support
for various adversarial capabilities. For example, the set X can contain functions
which allow the adversary to perform specific functionality on an entity, func-
tionality which the adversary cannot achieve via the execution of P. We detail
and provide concrete examples of such functionalities in Section 2.3.

Changes to the ExecA,P execution process. In addition to the extensive
control the adversary had over the execution, the adversary now can decide not
only which entity is invoked next, but also whether the operation is from the set
X of execution operations, or from the set of operations supported by P; while
we did not explicitly write it, some default values are returned if the adversary
specifies an operation which does not exist in the corresponding set.

To invoke an operation defined by P over some entity i, we use the same
notation as before, but the output of such execution contains an additional
output value sec-out, where sec-out[e][·] is a ‘secure output’ - namely, it contains
values that are shared only with the execution process itself, and not shared with
the adversary; e.g., such values may be used, if there is an appropriate operation
in X , to establish a ‘secure channel’ between parties, which is not visible to A.
In sec-out, the first parameter denotes the specific event e in which the secure
output was set; the second one is optional, e.g., may specify the ‘destination’ of
the secure output. Similarly, X is also defined as a single PPT algorithm and we
use a similar notation to invoke its operations: X [opr](sX , s, inp, clk, ent), where
opr, s, inp, clk are as before, and sX is the execution process’s state and ent is
an entity identifier.

Construction. The extended execution process (Algorithm 2) consists of the
following modifications. The initialization phase (lines 1-4) has one additional
line (line 3), where we initialize the ‘execution operations state’ sX ; this state is
used by execution operations (in X), allowing them to be defined as (stateless)
functions. Note that any set of execution operations X is assumed to contain an
‘Init’ operation, and we may omit the ‘Init’ operation from the notation when
specifying X ; if it is omitted, the ‘default’ ‘Init’ operation is assumed, which
simply outputs (params, params.P[·]). The rest of the initialization lines are
the same.

The main execution loop (lines 5-16) is as before, but with one difference,
where the adversary A determines in line 7 the type of operation type[e] to
be invoked by an entity ent[e] ∈ N. The operation type type[e] ∈ {‘X ’, ‘P’}

5 We use the term ‘set’, but note that X is defined as a single PPT algorithm, similarly
to how P is defined.

10

Algorithm 2 Extendible Adversary-Driven Execution Process ExecXA,P(params)

1: (sA,N, params.P[·])← A[‘Init’](params) . Initialize A with params

2: ∀i ∈ N : si ← P[‘Init’] (⊥, params.P[i],⊥) . Initialize entities’ local states

3: sX ← X [‘Init’](params, params.P[·]) . Initial exec state

4: e← 0 . Initialize loop’s counter

5: repeat

6: e← e+ 1 . Advance the loop counter

7: (ent[e], opr[e], type[e], inp[e], clk[e], τ [e])← A(sA) .

A selects entity ent[e], opera-
tion opr[e], input inp[e], clock
clk[e], and real time τ [e] for
event e

8: sIn[e]← sent[e] . Save input state

9: if type[e] = ‘X ’ then . If A chose to invoke an oper-
ation from X .

10:
(
sX , sent[e], out[e], sec-out[e][·]

)
← X [opr[e]]

(
sX , sent[e], inp[e], clk[e], ent[e]

)
11: else . A chose to invoke an opera-

tion from P.

12:
(
sent[e], out[e], sec-out[e][·]

)
← P [opr[e]]

(
sent[e], inp[e], clk[e]

)
13: end if

14: sOut[e]← sent[e] . Save output state

15: (sA, outA, F)← A (sA, out[e]) .
A decides when to terminate
the loop (outA 6= ⊥), based on
out[e]

16: until outA 6= ⊥

17: T ←
(
outA, e,N, F, ent[·], opr[·], type[·], inp[·], clk[·], τ [·], out[·], params.P[·], sIn[·], sOut[·], sec-out[·][·]

)

18: Return T . Output transcript of run

indicates if the operation opr[e] is protocol-specific (defined in P) or is it one of
the execution process operations (defined in X). (If type[e] /∈ {‘X ’, ‘P’}, then the
execution process assumes that the operation is protocol-specific.) Afterwards,
the event is executed (lines 9-12) through the appropriate algorithm, based on
the operation type, either X , if type[e] = ‘X ’, or P otherwise.

The termination phase (lines 17-18) is the same as before, but also includes in
the transcript the type[·] values and the sec-out[·][·] for all invoked events. Private
values, such as entities’ private keys, are not part of the execution transcript
unless they were explicitly included in the output due to an invocation of an
operation from X that would allow it.

Note: We assume that X operations are always defined such that whenever
X is invoked, it does not run A and only runs P at most once (per invocation
of X). Also, in lines 7 and 15, the operation to A is not explicitly written in
the pseudo-code. We assume that in fact nothing is given to A for the operation

11

(length 0) - this implies that A will not be re-initialized during the execution
process.

2.3 Using X to Define Specification and Entity-Faults Operations

The ‘default’ execution process is defined by an empty X set. This provides the
adversary A with Man-in-the-Middle (MitM) capabilities, and even beyond: A
receives all outputs, including messages sent, and controls all inputs, including
messages received; furthermore, A controls the values of the local clocks. A
non-empty set X can be used to define specification operations and entity-fault
operations; let us discuss each of these two types of execution process operations.

Specification operations. Some model and requirement specifications re-
quire a special execution process operation, possibly involving some information
which must be kept private from the adversary. One example are indistinguisha-
bility requirements, which are defined in Sec. 4.3.1 using three operations in
X : ‘Flip’, ‘Challenge’ and ‘Guess’, whose meaning most readers can guess (and
confirm the guess in Sec. 4.3.1).

The ‘Sec-in’ X -operation. As a simple example of a useful specification op-
eration, we now define the ‘Sec-in’ operation, which allows the execution process
to provide a secure input from one entity to another, bypassing the adversary’s
MitM capabilities. This operation can be used for different purposes, such as to
assume secure shared-key initialization - for example, see App. C.2. We define
the ‘Sec-in’ operation in Equation 1.6

X [‘Sec-in’] (sX , s, e
′, clk, ent) ≡ [sX ||P[‘Sec-in’] (s, sec-out[e′][ent], clk)] (1)

As can be seen, invocation of the ‘Sec-in’ operation returns the state sX un-
changed (and unused); the other outputs are simply defined by invoking the
‘Sec-in’ operation of the protocol P, with input sec-out[e′][ent] - the sec-out
output of the event e′ intended for entity ent.

Note, that although ‘Sec-in’ facilitates delivery of data from some entity
to another while ensuring that the adversary is unable to access this data, it
does not provide authentication, namely, the receiving entity cannot rely on the
authenticity of the inputted data.

Entity-fault operations. It is quite easy to define X -operations that facili-
tate different types of entity-fault models, such as honest-but-curious, byzantine
(malicious), adaptive, proactive, self-stabilizing, fail-stop and others. Let us give
informal examples of three fault operations:
‘Get-state’: provides A with the entire state of the entity. Assuming no other

entity-fault operation, this is the ‘honest-but-curious’ adversary; note that
the adversary may invoke ‘Get-state’ after each time it invokes the entity, to
know its state all the time.

‘Set-output’: allows A to force the entity to output specific values. A ‘Byzan-
tine’ adversary would use this operation whenever it wants the entity to
produce specific output.

6 We use ≡ to mean ‘is defined as’.

12

‘Set-state’: allows A to set any state to an entity. For example, the ‘self-
stabilization’ model amounts to an adversary that may perform a ‘Set-state’
for every entity (once, at the beginning of the execution).

See discussion in App. D.1.2, and an example: use of these ‘fault operations’ to
define the threshold security model M|F|≤f , assumed by many protocols.

Comments. Defining these aspects of the execution in X , rather than having
a particular choice enforced as part of the execution process, provides significant
flexibility and makes for a simpler execution process.

Note that even when the set X is non-empty, i.e., contains some non-default
operations, the adversary’s use of these operations may yet be restricted for the
adversary to satisfy a relevant model. We present model specifications in Sec. 3.

The operations in X are defined as (stateless) functions. However, the exe-
cution process provides state sX that these operations may use to store values
across invocations; the same state variable may be used by different operations.
For example, the ‘Flip’, ‘Challenge’ and ‘Guess’ X -operations, used to define
indistinguishability requirements in Sec. 4.3.1, use sX to share the value of the
bit flipped (by the ‘Flip’ operation).

3 Models

The execution process, described in Sec. 2, specifies the details of running a
protocol P against an adversary A which has an extensive control over the
execution. In this section, we present two important concepts of MoSS: a model
M, used to define assumptions about the adversary and the execution, and
specifications (π, β). We use specifications7 to define both models (in this section)
and requirements (in Sec. 4).

A MoSS (model/requirement) specification is a pair of functions (π, β), where
π(T, params) is called the predicate (and returns > or ⊥) and β(params) is the
base (probability) function (and evaluates to values from 0 to 1). The predicate π
is applied to the execution-transcript T and defines whether the adversary ‘won’
or ‘lost’. The base function β is the ‘inherent’ probability of the adversary ‘win-
ning’; it is often simply zero (β(x) = 0), e.g., for forgery in a signature scheme,
but sometimes a constant such as half (for indistinguishability specifications) or
a function such as 2−l (e.g., for l-bit MAC) of the parameters params.

A MoSS model is defined as a set of (one or more) specifications, i.e., M =
{(π1, β1), . . .}. When the model contains only one specification, we may abuse
notation and write M = (π, β) for convenience.

For example, consider a model M = (π, 0). Intuitively, adversary A satisfies
model (π, 0), if for (almost) all execution-transcripts T of A, predicate π holds,
i.e.: π(T, params) = >, where params are the parameters used in the execution
process (Sec. 3.1). One may say that the model ensures that the (great) power
that the adversary holds over the execution is used ‘with great responsibility’.

7 We use the term ‘specification’ to refer to a component of a model (or of a require-
ment - see Sec. 4). This is not to be confused with ‘security specification’, which we
use to mean a model, requirement, and specific execution process.

13

The separation between the execution process and the model allows to use the
same - relatively simple - execution process for the analysis of many different
protocols, under different models (of the environment and adversary capabili-
ties). Furthermore, it allows to define multiple simple models, each focusing on
a different assumption or restriction, and require that the adversary satisfy all
of them.

As depicted in Figure 1, the model captures all of the assumptions regarding
the environment and the capabilities of the adversary, including aspects typically
covered by the (often informal) communication model, synchronization model
and adversary model:

Adversary model: The adversary capabilities such as MitM vs. eavesdropper,
entity corruption capabilities (e.g., threshold or proactive security), compu-
tational capabilities and more.

Communication model: The properties of the underlying communication mech-
anism, such as reliable or unreliable communication, FIFO or non-FIFO,
authenticated or not, bounded delay, fixed delay or asynchronous, and so
on.

Synchronization model: The availability and properties of per-entity clocks.
Common models include purely asynchronous clocks (no synchronization),
bounded-drift clocks, and synchronized or syntonized clocks.

The definitions of models and their predicates are often simple to write and
understand - and yet, reusable across works.

In Sec. 3.1, we define the concept of a specification. In Sec. 3.2, we define the
notion of a model-satisfying adversary. Finally, in Sec. 3.3, we give an example
of a model. Additional examples of models are given later in this paper, mainly
in D.1.

3.1 Specifications

We next define the specification, used to define both models and requirements.

A specification is a pair (π, β), where π is the specification predicate and β
is the base function. A specification predicate is a predicate whose inputs are
execution transcript T and parameters params. When π(T, params) = >, we
say that execution satisfies the predicate π for the given value of params. The
base function gives the ‘base’ probability of success for an adversary. For integrity
specifications, e.g. forgery, the base function is often either zero or 2−l, where
l is the output block size; and for indistinguishability-based specifications (see
Sec. 4.3), the base function is often 1

2 .

We next define the advantage8 of adversary A against protocol P for specifi-
cation predicate π using execution operations X , as a function of the parameters
params. This is the probability that π(T, params) = ⊥, for the transcript T of
a random execution: T ← ExecXA,P(params).

8 Note that the advantage of A is the total probability of A winning, i.e., it does not
depend on a base function.

14

Definition 1 (Advantage of adversary A against protocol P for spec-
ification predicate π using execution operations X). Let A,P,X be al-
gorithms and let π be a specification predicate. The advantage of adversary A
against protocol P for specification predicate π using execution operations X is
defined as:

επA,P,X (params)
def
= Pr

[
π (T, params) = ⊥, where

T ← ExecXA,P(params)

]
(2)

3.2 Model-Satisfying Adversary

Models are sets of specifications, used to restrict the capabilities of the adversary
and the events in the execution process. This includes limiting of the possible
faults, defining initialization assumptions, and defining the communication and
synchronization models. We check whether a given adversary A followed the
restrictions of a given model M in a given execution by examining whether a
random transcript T of the execution satisfies each of the model’s specification
predicates. Next, we define what it means for adversary A to poly-satisfy model
M using execution operations X .

Definition 2 (Adversary A poly-satisfies modelM using execution op-
erations X). Let A,X ∈ PPT , and let M be a set of specifications, i.e.,
M = {(π1, β1), . . .}. We say that adversary A poly-satisfies model M using

execution operations X , denoted A |=X
poly
M, if for every protocol P ∈ PPT ,

params ∈ {0, 1}∗, and specification (π, β) ∈ M, the advantage of A against
P for π using X is at most negligibly greater than β(params), i.e.:

A |=X
poly
M def

=

[
(∀ P ∈ PPT, params ∈ {0, 1}∗, (π, β) ∈M) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

]
(3)

3.3 Example: the Bounded-Clock-Drift Model MDrift
∆clk

To demonstrate a definition of a model, we present the MDrift
∆clk

model, defined

asMDrift
∆clk

= (πDrift
∆clk

, 0). The predicate πDrift
∆clk

bounds the clock drift, by enforcing
two restrictions on the execution: (1) each local-clock value (clk[ê]) must be
within ∆clk drift from the real time τ [ê], and (2) the real time values should
be monotonically increasing. As a special case, when ∆clk = 0, this predicate
corresponds to a model where the local clocks are fully synchronized, i.e., there
is no difference between entities’ clocks. See Algorithm 3.

15

Algorithm 3 The πDrift
∆clk

(T , params) predicate, used by the MDrift
∆clk

≡ (πDrift
∆clk

, 0) model

1: return
(

2: ∀ê ∈ {1, . . . , T.e}: . For each event

3: |T.clk[ê]− T.τ [ê]| ≤ ∆clk .
Local clock is within ∆clk drift
from real time

4: and if ê ≥ 2 then T.τ [ê] ≥ T.τ [ê−1] .
In each consecutive event, the
real time difference is monoton-
ically increasing)

4 Requirements

In this section we define and discuss requirements. Like a model, a requirement
is a set of specifications R = {(π1, β1), . . .}. When the requirement contains only
one specification, we may abuse notation and write R = (π, β) for convenience.
Each requirement specification (π, β) ∈ R includes a predicate (π) and a base
function (β). A requirement defines one or more properties that a protocol aims
to achieve, e.g., security, correctness or liveness requirements. By separating
between models and requirements, MoSS obtains modularity and reuse; different
protocols may satisfy the same requirements but use different models, and the
same models can be reused for different protocols, designed to satisfy different
requirements.

The separation between the definition of the model and of the requirements
also allows definition of generic requirement predicates., which are applicable to
protocols designed for different tasks, which share some basic goals. We identify
several generic requirement predicates that appear relevant to many security
protocols. These requirement predicates focus on attributes of messages, i.e.,
non-repudiation, and on detection of misbehaving entities (see Appendix D.2).

4.1 Model-Secure Requirements

We next define what it means for a protocol to satisfy a requirement under
some model. First, consider a requirement R = (π, β), which contains just one
specification, and let b be the outcome of π applied to (T, params), where T is
a transcript of the execution process (T = ExecXA,P(params)) and params are
the parameters, i.e., b ← π(T, params); if b = ⊥ then we say that requirement
predicate π was not satisfied in the execution of P, or that the adversary won in
this execution. If b = >, then we say that requirement predicate π was satisfied
in this execution, or that the adversary lost.

We now define what it means for P to poly-satisfy R under model M using
execution operations X .

Definition 3 (Protocol P poly-satisfies requirement R under modelM
using execution operations X). Let P,X ∈ PPT , and let R be a set of spec-
ifications, i.e., R = {(π1, β1), . . .}. We say that protocol P poly-satisfies require-

ment R under modelM using execution operations X , denoted P |=M,X
poly

R, if for

16

every PPT adversary A that poly-satisfies M using execution operations X , ev-
ery parameters params ∈ {0, 1}∗, and every specification (π, β) ∈ R, the advan-
tage of A against P for π using X is at most negligibly greater than β(params),
i.e.:

P |=M,X
poly

R def
=

[
(∀ A ∈ PPT s.t. A |=X

poly
M, params ∈ {0, 1}∗, (π, β) ∈ R) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

]
(4)

4.2 Example: the No False Accusations Requirement RNFA

Intuitively, the No False Accusations (NFA) requirementRNFA states that a non-
faulty entity a 6∈ F would never (falsely) accuse of a fault another non-faulty
entity, b 6∈ F. It is defined as RNFA = (πNFA, 0). To properly define the πNFA
requirement predicate, we first define a convention for one party, say a ∈ N, to
output an Indicator of Accusation, i.e., ‘accuse’ another party, say iM ∈ N, of a
fault. Specifically, we say that at event êA of the the execution, entity ent[êA]
accuses entity iM, if out[êA] is a triplet of the form (IA, iM, x). The last value
in this triplet, x, should contain the clock value at the first time that ent[êA]
accused iM; we discuss this in App. D as the value x is not relevant for the
requirement predicate, and is just used as a convenient convention for some
protocols.

The No False Accusations (NFA) predicate πNFA checks whether the adver-
sary was able to cause one honest entity, say Alice, to accuse another honest
entity, say Bob (i.e., both Alice and Bob are in N−F). Namely, πNFA(T, params)
returns ⊥ only if T.out[e] = (IA, j, x), for some j ∈ T.N, and both j and T.ent[e]
are honest (i.e., j, T.ent[e] ∈ T.N− T.F).

Algorithm 4 No False Accusations Predicate πNFA(T, params)

1: return ¬
(

2: T.ent[T.e] ∈ T.N− T.F . T.ent[T.e] is an honest entity

3: and ∃j ∈ T.N− T.F, x s.t. (IA, j, x) ∈ T.out[T.e] . T.ent[T.e] accused an honest entity)

4.3 Supporting Confidentiality and Indistinguishability

The MoSS framework supports specifications for diverse goals and scenarios.
We demonstrate this by showing how to define ‘indistinguishability game’-based
definitions, i.e., confidentiality-related specifications.

4.3.1 Defining Confidentiality-Related Operations

To support confidentiality, we define the set X to include the following three
operations: ‘Flip’, ‘Challenge’, ‘Guess’.

17

– ‘Flip’: selects a uniformly random bit sX .b via coin flip, i.e., sX .b
R← {0, 1}.

– ‘Challenge’: executes a desired operation with one out of two possible inputs,
according to the value of sX .b. Namely, when A outputs opr[e] = ‘Challenge’,
the execution process invokes:

P[inp[e].opr]
(
sent[e], inp[e].inp[sX .b], clk[e]

)
where inp[e].opr ∈ P (one of the operations in P) and inp[e].inp is an ‘array’
with two possible inputs, of which only one is randomly chosen via sX .b,
hence, the inp[e].inp[sX .b] notation.

– ‘Guess’: checks if a ‘guess bit’, which is provided by the adversary as input,
is equal to sX .b, and returns the result in sec-out[e]. The result is put in
sec-out to prevent the adversary from accessing it.

These three operations are used as follows. The ‘Flip’ operation provides
Exec with access to a random bit sX .b that is not controlled or visible to A.
Once the ‘Flip’ operation is invoked, the adversary can choose the ‘Challenge’
operation, i.e., type[e] = X and opr[e] = ‘Challenge’, and can specify any opera-
tion of P it wants to invoke (inp[e].opr) and any two inputs it desires (inp[e].inp).
However, Exec will invoke P[inp[e].opr] with only one of the inputs, according
to the value of the random bit sX .b, i.e., inp[e].inp[sX .b]; again, since A has
no access to sX .b, A neither has any knowledge about which input is selected
nor can influence this selection. (As usual, further assumptions about the inputs
can be specified using a model.) Then, A can choose the ‘Guess’ operation and
provide its guess of the value of sX .b (0 or 1) as input.

4.3.2 The Generic Indistinguishability Requirement Rπ
IND and the

Message Confidentiality Requirement RπMsgConf

IND

To illustrate how the aforementioned operations can be used in practice, we
define the indistinguishability requirement RπIND as RπIND = (INDπ, 1

2), where
the INDπ predicate is shown in Algorithm 5. INDπ checks that the adversary
invoked the ‘Guess’ operation during the last event of the execution and examines
whether the ‘Guess’ operation outputted > in its secure output and whether
the π model was satisfied. The adversary ‘wins’ against this predicate when it
guesses correctly during the ‘Guess’ event. Since an output of ⊥ by a predicate
corresponds to the adversary ‘winning’ (see, e.g., Def. 1), the INDπ predicate
returns the negation of whether the adversary guessed correctly during the last
event of the execution. The base function of the RπIND requirement is 1

2 , because
the probability that the adversary guesses correctly should not be significantly
more than 1

2 .

18

Algorithm 5 INDπ(T, params) Predicate

1: return ¬
(

2: T.type[T.e] = ‘X ’

3: and T.opr[T.e] = ‘Guess’ and T.sec-out[T.e] = > .
The last event is a ‘Guess’ event
and A guessed correctly

4: and π(T, params) . The model predicate π was met)

We can use INDπ to define more specific requirements; for example, we
use the πMsgConf predicate (Algorithm 6) to define RπMsgConf

IND = (INDπMsgConf , 1
2),

which defines message confidentiality for an encrypted communication protocol.
Namely, assume P is an encrypted communication protocol, which includes the
following two operations: (1) a ‘Send’ operation which takes as input a message
m and entity iR and outputs an encryption of m for iR, and (2) a ‘Receive’
operation, which takes as input an encrypted message and decrypts it.

The πMsgConf specification predicate (Algorithm 6) ensures that:
– A only asks for ‘Send’ challenges (since we are only concerned with whether

or not A can distinguish outputs of ‘Send’).
– During each ‘Send’ challenge, A specifies two messages of equal length and

the same recipient in the two possible inputs. This ensures that A does not
distinguish the messages based on their lengths.

– A does not use the ‘Receive’ operation at the challenge receiver receiving
from the challenge sender to decrypt any output of a ‘Send’ challenge.

Algorithm 6 πMsgConf (T , params) Predicate

1: return
(

2: ∀ê ∈ {1, . . . , T.e} s.t. T.type[ê] = ‘X ’ and T.opr[ê] = ‘Challenge’:

3: T.inp[ê].opr = ‘Send’ .
Every ‘Challenge’ event is for
‘Send’ operation

4: and |T.inp[ê].inp[0].m| = |T.inp[ê].inp[1].m| . Messages have equal length

5: and ∃ iS, iR ∈ T.N s.t. .
There is one specific sender iS
and one specific receiver iR

6: T.inp[ê].inp[0].iR = T.inp[ê].inp[1].iR = iR .
iR is the recipient for both mes-
sages

7: and T.ent[ê] = iS . iS is the sender

8: and @ ê′ s.t. T.opr[ê′] = ‘Receive’ . There is no ‘Receive’ event ê′

9:

and T.inp[ê′].c = T.out[ê].c

and T.ent[ê′] = iR

and T.inp[ê′].iS = iS

.
Where A uses decrypts the out-
put of the challenge

)

19

5 Modularity Lemmas

MoSS models and requirements are defined as sets of specifications, so they
can easily be combined by simply taking the union of sets. There are some
intuitive properties one expects to hold for such modular combinations of models
or requirements. In this section we present the model and requirement modularity
lemmas, which essentially formalize these intuitive properties. The lemmas can
be used in analysis of applied protocols, e.g., to allow a proof of a requirement
under a weak model to be used as part of a proof of a more complex requirement
which holds only under a stronger model. We believe that they may be helpful
when applying formal methods, e.g., for automated verification and generation
of proofs.

In this section, we present the asymptotic security lemmas; the (straightfor-
ward) proofs of the asymptotic security lemmas are in App. E. The concrete
security lemmas and their proofs are in App. F.

In the following lemmas, we describe model M̂ as stronger than a model
M (and M as weaker than M̂) if M̂ includes all the specifications of M, i.e.,

M⊆ M̂. Similarly, we say that a requirement R̂ is stronger than a requirement
R (and R is weaker than R̂) if R̂ includes all the specifications of R, i.e., R ⊆ R̂.
Basically, stronger models enforce more (or equal) constraints on the adversary
or other assumptions, compared to weaker ones, while stronger requirements
represent more (or equal) properties achieved by a protocol or scheme, compared
to weaker ones.

5.1 Asymptotic Security Model Modularity Lemmas

The model modularity lemmas give the relationships between stronger and weaker
models. They allow us to shrink stronger models (assumptions) into weaker ones
and to expand weaker models (assumptions) into stronger ones as needed - and
as intuitively expected to be possible.

The first lemma is the model monotonicity lemma (asymptotic security). It

shows that if an adversary A satisfies a stronger model M̂, then A also satisfies
any model that is weaker than M̂.

Lemma 1 (Model monotonicity lemma (asymptotic security)).

For any set X of execution process operations, for any modelsM and M̂ such
that M⊆ M̂, if an adversary A poly-satisfies M̂ using X , then A poly-satisfies
M using X , namely:

A |=X
poly
M̂ ⇒ A |=X

poly
M (5)

We next show the models union lemma (asymptotic security), which shows
that if an adversary satisfies two models M and M′, then A also satisfies the
stronger model that is obtained by taking the union of M and M′.

20

Lemma 2 (Models union lemma (asymptotic security)).
For any set X of execution process operations and any two models M,M′,

if an adversary A poly-satisfies both M and M′ using X , then A poly-satisfies
the ‘stronger’ model M̂ ≡M∪M′ using X , namely:(

A |=X
poly
M∧A |=X

poly
M′
)
⇒ A |=X

poly
M̂ (6)

We next show the requirement-model monotonicity lemma (asymptotic se-
curity), which shows that if a protocol satisfies a requirement under a weaker
model, then it satisfies the same requirement under a stronger model (using the
same operations set X). This is true, because if we are assuming everything that
is included in the stronger model, then we are assuming everything in the weaker
model (by Lemma 1), which implies that the protocol satisfies the requirement
for such adversaries.

Lemma 3 (Requirement-model monotonicity lemma (asymptotic se-
curity)).

For any models M and M̂ such that M ⊆ M̂, if a protocol P poly-satisfies
requirement R under M using the execution process operations set X , then P
poly-satisfies R under M̂ using X , namely:

P |=M,X
poly

R ⇒ P |=M̂,X
poly

R (7)

5.2 Asymptotic Security Requirement Modularity Lemmas

The requirement modularity lemmas prove relationships between stronger and
weaker requirements, assuming the same model M and operations set X . They
allow us to infer that a protocol satisfies a particular weaker requirement given
that it satisfies a stronger one, or that a protocol satisfies a particular stronger
requirement given that it satisfies its (weaker) ‘sub-requirements’.

The requirement monotonicity lemma (asymptotic security) shows that if a

protocol satisfies a stronger requirement R̂, then it satisfies any requirement that
is weaker than R̂ (under the same model M and using the same operations set
X).

Lemma 4 (Requirement monotonicity lemma (asymptotic security)).

For any set X of execution process operations, any modelM, and any require-
ments R and R̂ such that R ⊆ R̂, if a protocol P poly-satisfies the (stronger)

requirement R̂ under M using X , then P poly-satisfies R under M using X ,
namely:

P |=M,X
poly

R̂ ⇒ P |=M,X
poly

R (8)

Finally, the requirements union lemma (asymptotic security) shows that if
a protocol satisfies two requirements R and R′, then it satisfies the stronger
requirement that is obtained by taking the union of R and R′ (under the same
model M and operations set X).

21

Lemma 5 (Requirements union lemma (asymptotic security)).
For any set X of execution process operations, any models M and M′, and

any two requirements R and R′, if a protocol P poly-satisfies R under M using
X and poly-satisfies R′ under M′ using X , then P poly-satisfies the ‘combined’
(stronger) requirement R̂ ≡ R∪R′ under model M̂ ≡M∪M′ using X , namely:(

P |=M,X
poly

R∧ P |=M
′,X

poly
R′
)
⇒ P |=M̂,X

poly
R̂ (9)

6 Using MoSS for Applied Specifications

In this section, we give a taste of how MoSS can be used to define applied security
specifications, with realistic, non-trivial models and requirements. In Section 6.1,
we discuss AuthBroadcast, a simple authenticated broadcasting protocol, which
we use to demonstrate the use of MoSS’s modularity lemmas. In Section 6.2 we
discuss PKI schemes, which underlie the security of countless real-world appli-
cations, and show how MoSS enables rigorous requirements and models for PKI
schemes. The definitions we show are only examples from [25], which present full
specification and analysis of PKI schemes. The AuthBroadcast protocol is also
not a contribution; we present it as an example.

6.1 AuthBroadcast: Authenticated Broadcast Protocol

In Appendix C, we present the AuthBroadcast protocol, a simple authenticated
broadcast protocol that we developed and analyzed to help us fine-tune the MoSS
definitions. AuthBroadcast enables a set of entities N to broadcast authenticated
messages to each other, i.e., to validate that a received message was indeed sent
by a member of N. The protocol uses a standard deterministic message authen-
tication scheme MAC which takes as input a tag length, key, and message and
outputs a tag. In this subsection, we present a few details as examples of the use
of MoSS; in particular, AuthBroadcast addresses shared-key initialization, an as-
pect which does not exist in PKI schemes. We defineMKeyShare

X [‘Sec-in’] andMExclude
P[‘Sec-in’],

two simple models for shared-key initialization. These models can be reused for
specifications of many other tasks.

The MoSS framework allows the analysis of the same protocol under dif-
ferent models, as we demonstrate here. Specifically, we present the analysis of
AuthBroadcast in several steps, where in each step, we prove that AuthBroadcast
satisfies a requirement - assuming increasingly stronger models. Note that in the
analysis, we also assume theMpolyAdv model, defined in Sec 7.3, in order to only
consider adversaries whose total runtime during the execution is bounded by a
polynomial; this is omitted below for simplicity.
1. We first show that AuthBroadcast ensures authentication of received messages

assuming that a key is shared securely once among all entities and valid n and
1κ parameters are given to the protocol. Namely, we show that AuthBroadcast
poly-satisfies RBroadcast

Auth∞
under MSecKeyInit using X -operations {‘Sec-in’}.

22

2. We then show that AuthBroadcast ensures authentication and freshness of
received messages under a stronger model that also assumes a weak-level of
clock synchronization (bounded clock drift). Namely, we show that AuthBroadcast

poly-satisfies RBroadcast
Authf(∆)

underMSecKeyInit
Drift∆clk

using X -operations {‘Sec-in’} for

f(∆) = ∆+ 2∆clk, where ∆clk is the assumed maximal clock drift.
3. Finally, we show that AuthBroadcast ensures correct bounded-delay deliv-

ery/receipt of broadcast messages (which implies authenticity and freshness
as well) under an even stronger model which also assumes a bounded delay
of communication and a sufficiently large freshness interval given to the pro-
tocol. Specifically, we show that AuthBroadcast poly-satisfies RBroadcast

Receive∆com

under MSecKeyInit
Drift∆clk ,Delay∆com

using X -operations {‘Sec-in’}, where ∆clk is the

assumed maximal clock drift and ∆com is the assumed maximal communi-
cation delay.

6.2 Specifications for PKI Scheme

PKI schemes are an essential building block for protocols utilizing public key
cryptography. Unfortunately, there have been multiple incidents and vulnera-
bilities involving PKI, resulting in extensive research on improving security of
PKI. Provably-secure PKI schemes were presented in [13], however, these spec-
ifications did not cover aspects critical in practice, such as timely revocation
or transparency. We next briefly discuss one of the PKI security specifications
defined using MoSS.

Sample model: MDrift
∆clk

. [25] defines several models covering assumptions re-
garding the adversary capabilities, the environment (communication and syn-
chronization) and the initialization, assumed by different PKI protocols. The
bounded clock drift model MDrift

∆clk
(presented in Section 3.3) is an example of a

generic model which is common to many applied protocols and can be reused
among different works and tasks.

Sample requirement: ∆TRA. PKI schemes have multiple security require-
ments, from simple requirements such as accountability to more complex require-
ments such as equivocation detection and prevention as well as transparency.
Intuitively, the ∆-transparency (∆TRA) requirement specifies that a certificate
attested as ∆-transparent must be available to all ‘interested’ parties, i.e., mon-
itors, within ∆ time of its transparency attestation being issued by a proper
authority, typically referred to as a logger. This requirement is defined as the
pair (π∆TRA, 0), where the π∆TRA predicate is defined in Algorithm 7, as a con-
junction of the simple sub-predicates, defined in [25].

Let us explain the operation of π∆TRA. This predicate ensures that for a cer-
tificate ψ and ∆-transparency attestation ρ as attested by an entity ρ.ι, there is
an honest entity ι ∈ N (HonestEntity), and ι confirmed that ρ.ι’s public key
is pk (CorrectPublicKey). Then, it verifies that ψ is a valid certificate at-
tested as ∆-transparent using ρ (ValidCertificateAttestation). However,
there exists another honest entity ιM ∈ N (HonestEntity) which monitors ρ.ι
(IsMonitor) but is unaware of ψ (HonestMonitorUnawareOfCertificate)

23

Algorithm 7 The ∆-transparency (∆TRA) predicate π∆TRA

π∆TRA(T, params) ≡


(ψ, ρ, pk, ι, ιM)← T.outA;

return ¬



HonestEntity(T, params, ι) ∧
CorrectPublicKey(T, params, ι, pk, ρ.ι) ∧
ValidCertificateAttestation(T, params, {∆TRA}, ψ, pk, ρ) ∧
HonestEntity(T, params, ιM) ∧
IsMonitor(T, params, ιM , ρ.ι) ∧
HonestMonitorUnawareOfCertificate(T, params, ψ, ρ) ∧
WasNotAccused(T, params, ιM , ρ.ι)


;



- although it should, and yet, there was no accusation of misbehavior issued9

(WasNotAccused).
This design for a predicate as a conjuncture of sub-predicate is typical and

rather intuitive, and it illustrates another aspect of modularity: the sub-predicates
are easy to understand and validate, and are also reusable; for example, a pred-
icate to validate an entity’s public key (ValidCertificateAttestation) or
that an entity is honest (HonestEntity) can be useful for other, unrelated to
PKI protocols.

7 Concrete Security and Ensuring Polytime Interactions

In this section, we present the CS compiler (Sec. 7.1), which transforms the ad-
versary into an ‘equivalent’ algorithm, which provides three additional outputs:
the total runtime of the adversary, the number of bit flips by the adversary, and
the initial size of the adversary’s state. We then use the CS compiler for two
applications. First, in Sec. 7.2, we extend MoSS to support concrete security.
Finally, in Sec. 7.3, we show how the CS compiler allows to ensure polytime in-
teractions, and in particular, limit the adversary so that its runtime is polynomial
in the security parameter.

7.1 The CS Compiler

The extension that will allow us to give concrete security definitions (Sec. 7.2)
and to enforce polytime interactions (Sec. 7.3), is a compiler, denoted CS (which
stands for both ‘CtrSteps’ and ‘Concrete Security’).

The input to CS is an (adversary) algorithm A, and the output, CS(A), is an
algorithm which outputs the same output as A would produce, and three addi-
tional values, added to the final outA output of A: outA.CtrSteps, the number of
steps of A throughout the execution; outA.CtrBitF lips, the number of bit-flip
operations performed by A; and outA.LenInitState, the size of the initial state
output by A.

9 Notice that ι, ιM are honest, but ρ.ι is not necessarily honest, and therefore,
WasNotAccused is needed, because ρ.ι might not cooperate in order for ιM to
not be aware of ψ.

24

Now, instead of running the execution process directly over input adver-
sary A, we run ExecXCS(A),P(params), i.e., we run the ‘instrumented’ adversary
CS(A). This way, in the execution transcript, we receive these three measured
values (outA.CtrSteps, outA.CtrBitF lips and outA.LenInitState). It remains
to describe the operation of CS.

Note that CS maintains its own state, which contains, as part of it, the state
of the adversary A. This creates a somewhat confusing situation, which may be
familiar to the reader from constructions in the theory of complexity, or, esp.
to practitioners, from the relation between a virtual machine and the program
it is running. Namely, the execution process received the algorithm CS(A) as
the adversary, while CS(A) is running the ‘real’ adversary A. Thus, the state
maintained by the execution process is now of CS(A); hence, we refer to this
state as sCS(A).

The state sCS(A) consists of four variables. The first variable contains the
state of the original adversary A. We denote this variable by sCS(A).sA; this
unwieldy notation is trying to express the fact that from the point of view of
the ‘real’ adversary A, this is its (entire) state, while it is only part of the state
sCS(A) of the CS(A) algorithm (run as the adversary by the execution process).

The other three variables in the state sCS(A) are invisible to A, since they are
not part of sCS(A).sA. These are: sCS(A).CtrSteps, a counter which the algorithm
CS(A) uses to sum up the total runtime (steps) of A; sCS(A).CtrBitF lips, a
counter which CS(A) uses to sum up the number of random bits flipped by A;
and, finally, sCS(A).LenInitState, which stores the size of the initial state output
by A.

Whenever the execution process invokes CS(A), then CS(A) ‘runs’ A on the
provided inputs, measuring the time (number of steps) until A returns its re-
sponse, as well as the number of random bits (coin flips) used by A. When
A returns a response, CS(A) increments the sCS(A).CtrSteps counter by the
run-time of A in this specific invocation and increments the sCS(A).CtrBitF lips
counter by the number of bit flips of A in this invocation. When A returns
a response (sA,N, params.P[·]) after being invoked by CS(A)[‘Init’](params)
in line 1, then CS(A) additionally sets sCS(A).LenInitState ← |sA|. Finally,
CS(A) checks if A signaled termination of the execution process. When A sig-
nals termination (by returning outA 6= ⊥), then the CS(A) algorithm sets
outA.CtrSteps, outA.CtrBitF lips, and outA.LenInitState to sCS(A).CtrSteps,
sCS(A).CtrBitF lips, and sCS(A).LenInitState, respectively, i.e., adds to outA
the computed total runtime of A during this execution, the number of bit flips
of A during this execution, and the size of the initial state output by A10; of
course, we still have outA 6= ⊥ and therefore the execution process terminates -
returning as part of outA the total runtime of A and the size of the initial state
output by A. Although these values are carried in outA, the adversary cannot
modify or view them.

10 Note this would override any values that A may write on outA.CtrSteps,
outA.CtrBitF lips, and outA.LenInitState, i.e., we essentially forbid the use of
outA.CtrSteps, outA.CtrBitF lips, and outA.LenInitState by A.

25

7.2 Concrete Security

We new describe how we can use CS to support concrete security [6] in MoSS.
In concrete security, the adversary’s advantage is a function of the ‘adversary
resources’, which may include different types of resources such as the runtime (in
a specific computational model), length (of inputs, keys, etc.), and the number of
different operations that the adversary invokes (e.g., ‘oracle calls’). Notice that
since we explicitly bound the adversary’s runtime, we do not need to require the
adversary to be a PPT algorithm.

To be more specific, we provide bounds on adversary resources, including
runtime and number of coin-flips (random bits), as parameters in params; this
allows the adversary to limit its use of resources accordingly. We (next) define the
Concrete Security model MCS, which validates that the adversary, indeed, does
not exceed the bounds specified in params. To validate the bounds on the adver-
sary’s runtime and number of coin-flips (random bits),MCS uses outA.CtrSteps
and outA.CtrBitF lips, hence, this model should be applied to the transcript
T ← ExecXCS(A),P(params), produced by running the ‘instrumented adversary’
CS(A).

7.2.1 The Concrete Security Model MCS and Resource Bounds

Concrete security defines the adversary’s advantage as a function of the bounds
on adversary resources, specified in params. Specifically, we adopt the following
conventions for the adversary resource parameters. First, params includes an ar-
ray params.bounds.maxCalls, where each entry params.bounds.maxCalls[type][opr]
contains the maximum number of calls that A is allowed to make to operation
opr of type type. Second, params includes the field params.bounds.maxSteps,
which is the maximum number of steps that the adversary is allowed to take,
and the field params.bounds.maxBitF lips, which is the maximum number of
bit flips that the adversary is allowed to use.

The Concrete Security modelMCS validates that the adversary never exceeds
these bounds; it is defined as MCS =

{
(πCS, 0)

}
, i.e., we expect the adversary

to always limit itself to the bounds specified in params.bounds.
The πCS predicate (Algorithm 8) ensures that: (1) A does not exceed the

bounds in params.bounds.maxCalls on the number of calls to each operation,
(2) A does not exceed the bound params.bounds.maxSteps on the number of
steps it takes, and (3)A does not exceed the bound params.bounds.maxBitF lips
on the number of bit flips it uses.

7.2.2 Satisfaction of Concrete-Security Models and Requirements

When using MoSS for concrete security analysis, for a specification (π, β), the
function β(params) is a bound on the probability of the adversary winning.
Namely, there is no additional ‘negligible’ probability for the adversary to win,
as we allowed in the asymptotic definitions. When A satisfies M, for every
specification inM, the probability of A winning is bounded by the base function

26

Algorithm 8 πCS(T , params) Predicate

1: return
(

2: ∀ type ∈ params.bounds.maxCalls:

3: ∀ opr ∈ params.bounds.maxCalls[type]: .
Maximum number of calls
to each operation with
bounds is not exceeded

4:

∣∣∣∣∣∣∣
ê

∣∣∣∣∣∣∣
ê ∈ {1, . . . , T.e} and

T.type[ê] = type and

T.opr[ê] = opr


∣∣∣∣∣∣∣ ≤ params.bounds.maxCalls[type][opr]

and T.outA.CtrSteps ≤ params.bounds.maxSteps .
Maximum number of steps
taken by A is not exceeded

and T.outA.CtrBitF lips ≤ params.bounds.maxBitF lips .
Maximum number of bit
flips used by A is not ex-
ceeded)

β. Similarly, when P satisfies R under some modelM, for every A that satisfies
M and every specification in R, the probability of A winning is bounded by the
base function β.

This implies that the base function is likely to differ when using MoSS for
asymptotic analysis versus concrete security analysis; e.g., in asymptotic analy-
sis, a specification (π, 0) may be used, but in concrete security analysis, (π, β)
may be used instead, where β is a function that returns values in [0, 1], which de-
pend on the resources available to the adversary, e.g., maximal runtime (steps).
This difference should be familiar to readers familiar with concrete-security def-
initions and results, e.g., [5]. However, often we can use the same predicate π in
both types of analysis.

We now give the concrete definition of a model-satisfying adversary. Note that
the base function β(params) is a function of the parameters (params), including
the bounds on the adversary resources (params.bounds). To make these bounds
meaningful, a model-satisfying adversary always has to satisfyMCS (see § 7.2.1).

Definition 4 (Adversary A CS-satisfies model M using execution op-
erations X). Let A,X be algorithms and let M be a set of specifications, i.e.,
M = {(π1, β1), . . .}. We say that adversary A CS-satisfies model M using execu-

tion operations X , denoted A |=X
CS
M, if for every protocol P, params ∈ {0, 1}∗,

and specification (π, β) ∈ M ∪MCS, the advantage of CS(A) against P for π
using X is bounded by β(params), i.e.:

A |=X
CS
M def

=

[(
∀ P, params ∈ {0, 1}∗, (π, β) ∈M∪MCS

)
:

επCS(A),P,X (params) ≤ β(params)

]
(10)

We also give the concrete definition of requirement-satisfying protocol.

Definition 5 (Protocol P CS-satisfies requirement R under model M
using execution operations X). Let P,X be algorithms, and let R be a set
of specifications, i.e., R = {(π1, β1), . . .}. We say that protocol P CS-satisfies

27

requirement R under modelM using execution operations X , denoted P |=M,X
CS

R,
if for every adversary A that CS-satisfiesM using execution operations X , every
parameters params ∈ {0, 1}∗, and every specification (π, β) ∈ R, the advantage
of CS(A) against P for π using X is bounded by β(params), i.e.:

P |=M,X
CS

R def
=

[
(∀ A s.t. A |=X

CS
M, params ∈ {0, 1}∗, (π, β) ∈ R) :

επCS(A),P,X (params) ≤ β(params)

]
(11)

Note that if adversaryA CS-satisfiesM using X for a modelM = {(π1, β1), . . .}
where every base function is a positive negligible function in the security param-
eter (i.e., |params|), then A poly-satisfies M′ using X for M′ = {(π1, 0), . . .} -
i.e., A satisfies a model with the same predicates asM but with all zero-constant
base functions in the asymptotic sense. Similarly, if protocol P CS-satisfies R
under M using X for a requirement R = {(π1, β1), . . .} where every base func-
tion is a positive negligible function in |params|, then P poly-satisfies R′ under
M using X for R′ = {(π1, 0), . . .}.

7.3 Ensuring Polytime Interactions

We next discuss a very different application of the CS Compiler (subsection 7.1):
ensuring polytime interactions. Let us first explain the polytime interaction chal-
lenge. In most of this work, as in most works in cryptography, we focus on PPT
algorithms and asymptotically polynomial specifications. For instance, consider
Definition 2, where we require A,X ,P ∈ PPT and bound the advantage by the
base function plus a negligible function - i.e., a function which is smaller than
any positive polynomial in the length of the inputs, for sufficiently large inputs.

However, when analyzing interacting systems as facilitated by MoSS, there is
a concern: each of the algorithms might be in PPT, yet the total runtime can be
exponential in the size of the original input. For example, consider an adversary
A, that, in every call, outputs a state which is twice the size of its input state.
Namely, if the size of the adversary’s state in the beginning was l, then after e
calls to the adversary algorithm A, the size of sA would be 2e · l, i.e., exponential
in the number of steps e.

For asymptotic analysis, we may want to ensure polytime interactions, i.e.,
to limit the total running time of A and P during the execution to be polyno-
mial. Let us first focus on the adversary’s runtime. To limit the adversary’s
total runtime by a polynomial in the length of its initial input, i.e., length
of params, we use the CS Compiler, i.e., consider the execution transcript of
ExecXCS(A),P(params). Specifically, we use the fact that the transcript T in-
cludes the size of the initial state output by A in T.sA.LenInitState, as well as
the total number of steps taken by A in T.sA.CtrSteps.

Define the model MpolyAdv as MpolyAdv = (πpolyAdv, 0), where the πpolyAdv

predicate, shown in Algorithm 9, verifies that T.sA.CtrSteps is bounded by
2·T.sA.LenInitState. When T is a transcript returned by ExecXCS(A),P(params),
this means that the number of steps taken by A over the whole execution does

28

not exceed twice11 the size of the initial state output by A, which is bounded
by a polynomial in |params|. Hence, model MpolyAdv ensures that the total
runtime of the adversary, over the entire execution, is polynomial in the size of
the input parameters.

Algorithm 9 The πpolyAdv (T , params) Predicate

1: return
(
T.outA.CtrSteps ≤ 2 · T.outA.LenInitState

)

TheMpolyAdv model ensures polynomial runtime of the adversary, and hence
also a polynomial number of invocations of the protocol. In some situations it is
also important to similarly restrict the protocols, e.g., when proving an impos-
sibility or lower-bound on protocols. Note that for most ‘real’ protocols, such
restrictions hold immediately from assuming the protocol is a PPT algorithm,
since such protocols use bounded-size state and messages (outputs); and if we
assume polynomial adversaries, then the total runtime of such protocols is poly-
nomial even if we allow linear growth in state and outputs. We can focus on
‘reasonable’ protocols by including an appropriate requirement in the specifica-
tions. More details are included in App. B.

8 Conclusions and Future Work

The MoSS framework enables modular security specifications for applied cryp-
tographic protocols, combining different models and requirements, each defined
separately. As a result, MoSS allows comparison of protocols based on the re-
quirements they satisfy and the models they assume. Definitions of models, and
even some generic requirements, may be reused across different works. While,
obviously, it takes some effort to learn MoSS, we found that the rewards of
modularity and reusability justify the effort.

Future work includes the important challenges of (1) developing computer-
aided mechanisms that support MoSS, e.g., ‘translating’ the modular MoSS spec-
ifications into a form supported by computer-aided proof tools, or developing
computer-aided proof tools for MoSS specifically, possibly using the modular-
ity lemmas of section 5, (2) extending the MoSS framework to support secure
composition, and (3) exploring the ability to support MoSS-like modular speci-
fications in simulation-based frameworks such as UC, and the ability to support
simulation-based specifications in MoSS. Finally, we hope that MoSS will prove
useful in specification and analysis of applied protocols, and the identification
and reuse of standard and generic models and requirements.

11 We allow the total runtime to be twice the length of the adversary’s initial state, to
give the adversary additional time so it can also output this initial state, and is left
with enough time for the execution.

29

Acknowledgements

We thank the anonymous reviewers for their insightful and constructive feed-
back; among other things, it helped us improve the definitions of models and
requirements. We also thank Yuval Ishay, Sergio Rajsbaum, Juan Garay and
Iftach Haitner for their comments and suggestions on earlier drafts of the paper.
Special thanks to Oded Goldreich for his encouragement and for suggesting a
simplified way to ensure total polynomial time, which was the basis for our cur-
rent ‘interactive polytime adversary’ (Section 7.3). Part of the work was done
while Ewa Syta had a visiting position at University of Connecticut. This work
was partially supported by the Comcast Corporation. The opinions expressed
are of the authors and not of their university or funding sources.

References

1. Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: Theory of Cryptography Conference. Springer (2004)

2. Barbosa, M., Barthe, G., Bhargavan, K., Blanchet, B., Cremers, C., Liao, K.,
Parno, B.: Sok: Computer-aided cryptography. In: IEEE Symposium on Security
and Privacy (2021)

3. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Annual Cryptology Conference (2011)

4. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols. IACR Cryptol. ePrint Arch
1998, 9 (1998), http://eprint.iacr.org/1998/009

5. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS. pp. 394–403 (1997)

6. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) Advances in Cryptology—CRYPTO ’93. Lecture Notes in Computer
Science, vol. 773, pp. 232–249. Springer-Verlag (22–26 Aug 1993)

8. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: EUROCRYPT (2006)

9. Blanchet, B.: A computationally sound mechanized prover for security protocols.
IEEE Transactions on Dependable and Secure Computing (2008)

10. Camenisch, J., Krenn, S., Küsters, R., Rausch, D.: iUC: Flexible universal com-
posability made simple. In: EUROCRYPT (2019)

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science (2001)

12. Canetti, R.: Universally composable security. Journal of the ACM (JACM) 67(5),
1–94 (2020)

13. Canetti, R., Shahaf, D., Vald, M.: Universally Composable Authentication and
Key-exchange with Global PKI. Cryptology ePrint Archive, Report 2014/432
(2014), https://eprint.iacr.org/2014/432

14. CCITT, B.B.: Recommendations X. 509 and ISO 9594-8. Information Processing
Systems-OSI-The Directory Authentication Framework (Geneva: CCITT) (1988)

15. Degabriele, J.P., Paterson, K., Watson, G.: Provable security in the real world.
IEEE Security & Privacy 9(3), 33–41 (2010)

30

http://eprint.iacr.org/1998/009
https://eprint.iacr.org/2014/432

16. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4), 792–807 (Oct 1986)

17. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

18. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on computing (1988)

19. Herzberg, A., Leibowitz, H., Syta, E., Wrótniak, S.: Moss: Modular security spec-
ifications framework - full version. Cryptology ePrint Archive, Report 2020/1040
(2020), https://eprint.iacr.org/2020/1040

20. Herzberg, A., Yoffe, I.: The layered games framework for specifica-
tions and analysis of security protocols. IJACT 1(2), 144–159 (2008),
https://www.researchgate.net/publication/220571819_The_layered_games_

framework_for_specifications_and_analysis_of_security_protocols

21. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Jour-
nal of Cryptology 28(3), 423–508 (2015)

22. Hofheinz, D., Unruh, D., Müller-Quade, J.: Polynomial runtime and composability.
Journal of Cryptology 26(3), 375–441 (2013)

23. Küsters, R., Tuengerthal, M., Rausch, D.: The IITM model: a simple and expressive
model for universal composability. Journal of Cryptology pp. 1–124 (2020)

24. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962 (Jun
2013). https://doi.org/10.17487/RFC6962

25. Leibowitz, H., Herzberg, A., Syta, E.: Provable security for PKI schemes. Cryptol-
ogy ePrint Archive, Report 2019/807 (2019), https://eprint.iacr.org/2019/807

26. Leibowitz, H., Piotrowska, A.M., Danezis, G., Herzberg, A.: No Right to Remain
Silent: Isolating Malicious Mixes. In: USENIX Security 19 (2019)

27. Lochbihler, A., Sefidgar, S.R., Basin, D., Maurer, U.: Formalizing constructive
cryptography using crypthol. In: Computer Security Foundations (2019)

28. Maurer, U.: Constructive cryptography–a new paradigm for security definitions
and proofs. In: Workshop on Theory of Security and Applications (2011)

29. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN Prover for the
Symbolic Analysis of Security Protocols. In: Computer Aided Verification (2013)

30. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

31. Wikström, D.: Simplified universal composability framework. In: Theory of Cryp-
tography Conference. Springer (2016)

31

https://eprint.iacr.org/2020/1040
https://www.researchgate.net/publication/220571819_The_layered_games_framework_for_specifications_and_analysis_of_security_protocols
https://www.researchgate.net/publication/220571819_The_layered_games_framework_for_specifications_and_analysis_of_security_protocols
https://doi.org/10.17487/RFC6962
https://eprint.iacr.org/2019/807

A Illustration of the Execution Process

Exec Adversary A Party i

A[‘Init’](params)

sA,N, params.P[·]
Initialize adversary
with params

P[‘Init’] (⊥, params.P[i],⊥)

si

Initialize parties loopInitialize parties loop ∀i ∈ N

Initialize entities’
local state

A(sA)

ent[e], opr[e], inp[e], clk[e], τ [e]

P [opr[e]]
(
sent[e], inp[e], clk[e]

)
sent[e], out[e]

A (sA, out[e])

sA, outA, F

Run loopRun loop Main execution

A selects entity
ent[e], operation
opr[e], input inp[e],
clock clk[e], and real
time τ [e] for event e

A decides when to
terminate the loop
(outA 6= ⊥), based
on out[e]

Output transcript of run

Fig. 3: A visual description of the MoSS execution process.

32

B Ensuring Polytime Interactions

In Sec. 7.3, we described how A and P may be PPT algorithms, but their
runtime over the whole execution may not be polynomial (in |params|), which
prevents reliance on (super-polynomial) hardness assumptions. To allow the use
of asymptotic analysis and hardness assumptions, we may want to ensure poly-
time interactions, i.e., to limit the total running time of A and P during the
execution to be polynomial.

This problem has been addressed in different ways, e.g., see two approaches in
[11,22]. In Sec. 7.3, we showed a simple solution, i.e., how to limit the adversary’s
total runtime to be polynomial in the size of the parameters params, using the CS
Compiler and the MpolyAdv model (Algorithm 9). This provides a simple way
to ensure that the adversary’s runtime is polynomial and that the adversary
only gives polynomially-bounded inputs to the protocol. However, validating
that an adversary satisfies MpolyAdv can be quite tricky and can require non-
trivial analysis of its operation, and, moreover, there are some issues which the
approach from Sec. 7.3 does not solve.

The first issue is that since the protocol also receives its state as input, directly
from the execution process (not adversary), then a ‘weird’ protocol may output
state whose length is, say, twice that of the input state, resulting in exponential
state after a polynomial number of events. Such a protocol could thus have
runtime which is exponential in |params| - in total, and even in specific calls,
after a linear number of steps.

A second possible problem is that a protocol may output strings which are
too long for the adversary to handle. For example, consider a simple protocol that
simply outputs messages twice the size of its input, and a model that requires
the adversary to ‘copy’ these messages to another entity running the protocol.
This would result in the output of the protocol growing exponentially (in the
number of events), and soon enough, the adversary may run out of its polynomial
runtime, which may prevent the adversary from ‘winning’ against a protocol,
even if this protocol is clearly (intuitively) insecure.

These issues should not exist with realistic protocols, since their output size
and state cannot grow and become exponential in the size of the original param-
eters. Thus, in this section, we present an alternative approach which addresses
the above issues and ensures polynomial runtime (and outputs) of both the ad-
versary and the protocol. Specifically, in Sec. B.1, we introduce two compiler
algorithms ACom and PCom (similarly to the CS compiler in Sec. 7.1) which
ensure that the outputs of the adversary and protocol are not too long, by trun-
cating the outputs, if necessary, before outputting them to the execution process.
In Sec. B.2, we give variants of the model-satisfying and requirement-satisfying
definitions which use the two compilers. Note that in this approach, we assume
that there are maximum input and output bounds for the protocol; the allowed
values for these bounds can be restricted using models. Models can also be used
to further restrict the outputs given to the protocol by the adversary in ways
that depend on the protocol’s maximum input and output bounds, as exempli-
fied in Sec. B.3. In Sec. B.4, we discuss bounded X -operations, which intuitively

33

provide input and output limits similar to those provided by the compilers. Fi-
nally, in Sec. B.5, we prove the Polynomial Runtime Theorem, which states that
in MoSS executions with bounded X -operations, adversary ACom(A), and pro-
tocol PCom(P), for A,P ∈ PPT , the runtime of A and the runtime of P are
polynomially-bounded (in |params|).

B.1 Adversary and Protocol Compilers

We start by defining two compiler algorithms, similarly to the CS compiler in
Sec. 7.1: the ACom compiler for the adversary, and the PCom compiler for the
protocol. In the next section, we will use these compilers to define variants of
Def. 2 and 3, the model-satisfying and requirement-satisfying definitions. The
purpose of the ACom compiler is to truncate outputs and output state of A, so
that they cannot get excessively large over the execution; to end the execution
if the number of events gets too large; and to enforce some basic restrictions on
three of the parameters given by the adversary to the protocol in params.P[·]
(specifically, the parameters 1κ, maxAOut, and maxPOut). The purpose of the
PCom compiler is to truncate outputs and output state of P, to prevent them
from growing excessively during the execution.

The input to ACom is an (adversary) algorithm A and the output is a mod-
ified adversary algorithm ACom(A). Pseudocode for the ACom(A) algorithm is
shown in Algorithm 10. (Note that we use trunc to denote a truncation function
- specifically, trunc(m,x) returns the first x bits of m.) The algorithm ACom(A)
runs A internally on provided inputs and then ‘processes’ its outputs as follows:

– After A is run for the first time (initialized) and outputs params, then
ACom(A) overwrites some values in the protocol parameters. In particular,
let j be the first entity output by A in N; then for all i ∈ N, ACom(A) sets:
• params.P[i].1κ ← 1|params|

• params.P[i].maxAOut← params.P[j].maxAOut
• params.P[i].maxPOut← params.P[j].maxPOut

It then outputs the modified params instead of the params output by A.
This ensures that the protocol receives the security parameter (that is,
1|params|) and the same maximum input and output sizes for all entities.
Any other parameters chosen by A to give to the protocol are not altered.

– Every time after this, when A is run, if the output of A (not including
its state) is longer than the protocol’s maximum input size, then ACom(A)
truncates it to have size |params.maxAOut|. Similarly, if A outputs a new
state that is longer than its previous state, then ACom(A) truncates it to
have the same size as the initial |sA|. The ACom(A) algorithm outputs the
truncated outputs and state to the execution process.

– The ACom(A) algorithm keeps track of how many times it has been invoked
to know how many events have happened. If the event number is already |sA|
then, in the second invocation of the adversary, ACom(A) outputs outA = >
to end the execution.

34

Algorithm 10 ACom(A)[opr](inputs)

1: if opr = ‘Init’ then

2: params← inputs

3: (sA,N, params.P[·])← A[‘Init’](params)

4: sACom(A).sA ← sA

5: sACom(A).numEvents← 0

6: sACom(A).maxStateSz ← |sA|

7: sACom(A).maxAOut← max{{1} ∪ {params.P[i].maxAOut}i∈N}

8: sACom(A).maxPOut← max{params.P[i].maxPOut}i∈N
9: ∀i ∈ N :

10: params.P[·].1κ ← 1|params|

11: params.P[·].maxAOut← sACom(A).maxAOut

12: params.P[·].maxPOut← sACom(A).maxPOut

13: return (sACom(A).sA,N, params.P[·])

14: else

15: sACom(A), inpA← inputs

16: if inpA = ⊥ then

17: outA← A(sACom(A).sA)

18: return trunc(outA, sACom(A).maxAOut)

19: else

20: (sA, outA, F)← A(sACom(A).sA, inpA)

21: sACom(A).sA ← trunc(sA, sACom(A).maxStateSz)

22: sACom(A).numEvents← sACom(A).numEvents+ 1

23: if sACom(A).numEvents > sACom(A).maxStateSz then

24: outA ← >

25: end if

26: return (sACom(A).sA, trunc((outA, F), sACom(A).maxAOut))

27: end if

28: end if

The input to PCom is a (protocol) algorithm P and the output is a modified
protocol algorithm PCom(P). Pseudocode for the PCom(P) algorithm is shown
in Algorithm 11. The algorithm PCom(P) runs P internally on provided inputs
and then ‘processes’ its outputs as follows:

– At initialization, PCom(P) saves the value of |params.maxPOut| internally.
After initialization, whenever P is run at an entity i, if the output of P is
longer than the protocol’s maximum output size, then PCom(P) truncates it
to have size |params.maxPOut|. Similarly, if P outputs a new state for entity
i that is longer than the entity’s previous state, then PCom(P) truncates it
to have the same size as the initial |si|. The PCom(P) algorithm outputs the
truncated outputs and state to the execution process.

35

Algorithm 11 PCom(P)[opr](sPCom(P), inp, clk)

1: if opr = ‘Init’ and sPCom(P) = ⊥ then

2: params.P ← inp

3: s← P[‘Init’](⊥, params.P,⊥)

4: sPCom(P).s← s

5: sPCom(P).maxStateSz ← |s|

6: sPCom(P).maxPOut← params.P.maxPOut

7: return s

8: else

9: (s, out, sec-out)← P[opr](sPCom(P).s, inp, clk)

10: sPCom(P).s← trunc(s, sPCom(P).maxStateSz)

11: return (sPCom(P).s, trunc((out, sec-out), sPCom(P).maxPOut))

12: end if

Note: We believe that the above definitions of ACom and PCom could be
altered. For example, it may be possible to allow the states to grow by a fixed
amount (polynomial in |params|) in each event; however, we decided to use fixed
state sizes for simplicity.

B.2 Model and Requirement Satisfaction Using ACom and PCom

We now use the ACom and PCom compilers to give alternate definitions of
model-satisfying and requirement-satisfying, in which we consider executions
with ACom(A) and PCom(P) instead of A and P. In Sec. B.5, we show that for
A,P ∈ PPT , such execution (with ACom(A) and PCom(P)) with some restric-
tions on the X -operations suffices to ensure polynomial runtime of both A and
P during the execution.

Definition 6 (Adversary A polybound-satisfies model M using execu-
tion operations X). Let A,X be algorithms and letM be a set of specifications,
i.e., M = {(π1, β1), . . .}. We say that adversary A polybound-satisfies model M
using execution operations X , denoted A |=X

polybound
M, if for every protocol P,

params ∈ {0, 1}∗, and specification (π, β) ∈ M, the advantage of ACom(A)
against PCom(P) for π using X is at most negligibly greater than β(params),
i.e.:

A |=X
polybound

M def
=

[
(∀ P ∈ PPT, params ∈ {0, 1}∗, (π, β) ∈M) :

επACom(A),PCom(P),X (params) ≤ β(params) +Negl(|params|)

]
(12)

Definition 7 (Protocol P polybound-satisfies requirement R under model
M using execution operations X). Let P,X be algorithms, and let R be a
set of specifications, i.e., R = {(π1, β1), . . .}. We say that protocol P polybound-
satisfies requirement R under model M using execution operations X , denoted

36

P |=M,X
polybound

R, if for every adversary A that polybound-satisfies M using execu-

tion operations X , every params ∈ {0, 1}∗, and every specification (π, β) ∈ R,
the advantage of ACom(A) against PCom(P) for π using X is at most negligibly
greater than β(params), i.e.:

P |=M,X
polybound

R def
=

[
(∀ A ∈ PPT s.t. A |=X

polybound
M, params ∈ {0, 1}∗, (π, β) ∈ R) :

επACom(A),PCom(P),X (params) ≤ β(params) +Negl(|params|)

]
(13)

B.3 Modeling Parameter Assumptions

Before continuing to bounded X -operations and the Polynomial Runtime The-
orem, we briefly discuss the use of the maximum input and output bounds,
which are given by the adversary to the protocol in params.P[·].maxAOut and
params.P[·].maxPOut. Real-world protocols typically have some limits (poly-
nomial in the security parameter) on the maximum inputs and output size.
Thus, we use params.P[·].maxAOut and params.P[·].maxPOut to specify these
bounds.

Recall that we allow the adversary to choose the maximum input and output
sizes of the protocol, and we use the ACom and PCom compilers to enforce these
limits. (Note that the ACom compiler ‘automatically’ ensures that all entities
get the same values for these bounds. It also ‘automatically’ gives the security
parameter |params| to all entities in unary in the parameter params.P[·].1κ.)
Notice that this implies that if A ∈ PPT , then the sizes of the maximum input
and output bounds are polynomial in |params|. However, not all values for these
bounds might make sense for a particular protocol, so it may be useful to restrict
the allowed values using models, just like how other assumptions are specified
in MoSS. Similarly, the adversary’s behavior after choosing particular values for
these bounds can be restricted using models. Below, we show such an example
model, which is used in the analysis of the AuthBroadcast protocol (Sec. C).

In the analysis of the AuthBroadcast protocol, we want to assume that:

– The key length is at least as large as the tag length.
– The maximum input and output bounds are at least as large as the security

parameter, so that keys can be sent and received by the protocol.
– The messages given to the protocol to be sent are not too long to be output

properly with tags.
– The outgoing messages (with tags) output by the protocol are not too long

to be received by the protocol.

For these assumptions, we can use the following model.

37

Algorithm 12 π(T, params) Predicate

1: return > if
(

2: n← |params.1n|

3: ∀ i ∈ T.N: (T.params.P[i].n = n))

4: and ∃ maxAOut,maxPOut s.t. ∀ i ∈ T.N : (T.params.P[i].maxAOut = maxAOut

and T.params.P[i].maxPOut = maxPOut)

and ∀ê ∈ {1, . . . , T.e}:

5: if T.opr[ê] = ‘Broadcast’ then:

|T.opr[ê]|+ |T.inp[ê]|+ |T.clk[ê]|+ n ≤ maxAOut

and |T.opr[ê]|+ |T.inp[ê]|+ |T.clk[ê]| ≤ maxPOut

6: else if T.opr[ê] = ‘Key-Gen’ then:

and |params| ≤ maxPOut

7: else if T.opr[ê] = ‘Sec-in’ then:

|T.opr[ê]|+ |T.inp[ê]|+ |T.clk[ê]|+ |params| ≤ maxAOut)

In the model predicate shown in Algorithm 12, line 3 ensures that the tag
length is set to |params.1n| for all entities - that is, we assume that some param-
eter 1n is given as part of params to the execution process (and the adversary),
and the adversary sets the tag length for the protocol to be the size of this pa-
rameter. Since the parameter is part of params, then the tag length is smaller
than the security parameter params.P[·].1κ given to the protocol, which is used
as the key length by the AuthBroadcast protocol.

Line 5 ensures that messages given by A to P to be broadcast (to be sent
out) are short enough to be able to be given to P as input and also short enough
to be able to be sent out with tags and delivered back to P as input with tags.

Line 6 ensures that the output bound of the protocol is large enough to allow
a key of length |params| to be sent out (through a secure channel).

Line 7 ensures that in ‘Sec-in’ operations, the inputs given by A to P are
short enough to be able to be given to P as input together with a key of length
|params| (which would come from a secure channel).

Thus, using a model predicate, we can assume that the lengths of messages
and other inputs which the adversary gives to the protocol are ‘reasonable’ with
respect to the protocol’s maximum input and output sizes and the particular
protocol. In effect, if we also assume a guaranteed delivery model, then we can
assume that any ‘corrupted’ protocol outputs are really ‘corrupted’, not simply
due to truncation by the compilers.

B.4 Bounded X -operations

We will soon show that we can ensure polynomial runtime for executions in which
we run ACom(A) and PCom(P) instead of A and P directly. First, however, we
need to make sure that any X -operations which are used in the execution also
have accordingly bounded outputs and inputs to the protocol. For this purpose,
we define a bounded X -operation.

38

Definition 8 (Bounded X -operation). Let ‘X’ be an X -operation. We say
that ‘X’ is a bounded X -operation if:
– ‘X’ does not run the adversary.
– ‘X’ runs the protocol at most once.
– If ‘X’ runs the protocol for entity i, then the input (not including state)

which it gives to the protocol has size at most params.maxAOut and the
input state which it gives to the protocol has size |si|.

– When ‘X’ is run for entity i, the output size (not including state) of ‘X’ is
at most params.maxPOut and the output state for the entity has size |si|.

In short, a bounded X -operation limits the size of inputs to the protocol and
outputs of the operation in the way that ACom(A) and PCom(P) do.

We can easily define variants of the previously defined X -operations (‘Flip’,
‘Challenge’, ‘Guess’, ‘Sec-in’, ‘Get-state’, ‘Set-output’, ‘Set-state’) which are
bounded X -operations. They would work the same, except they would trun-
cate the inputs to the protocol and/or outputs of the X -operations if needed;
e.g., the modified ‘Sec-in’ would give to the protocol a truncation of the output
from a previous event and part of the adversary’s input from the current event;
the modified ‘Set-state’ would output a truncation of the state provided by the
adversary as the new state of the entity; etc.

B.5 The Polynomial Runtime Theorem

We now present the Polynomial Runtime Theorem, which motivates the use of
the ACom and PCom compilers and bounded X -operations.

Theorem 1 (Polynomial Runtime Theorem). Let A,P,X ∈ PPT such
that all operations in X are bounded X -operations. Then in a MoSS execu-
tion ExecXACom(A),PCom(P)(params), the runtime of A and the runtime of P are
bounded by polynomials in |params|.

Proof. A is a PPT algorithm, so its runtime during initialization (that is, when
A[‘Init’](params) is run) must be bounded by some polynomial p(|params|) in
the security parameter |params|. Notice that since params.P[·].maxAOut and
params.P[·].maxPOut are output by A when it is initialized, then their lengths
are also bounded by p(|params|). The size of the initial state output by the
adversary, |sA|, is bounded by p(|params|) as well, since it is output when A is
initialized. Due to ACom(A), this implies that the number of events is bounded
by p(|params|).

ACom(A) and bounded X -operations ensure that the size of input, exclud-
ing state, to the protocol in any event is bounded by |params.maxAOut| and
hence by p(|params|). The protocol also receives the entity’s state. Recall that
PCom(P) and bounded X -operations ensure that the size of the state of each
entity stays the same as it was initially; the state of each entity i is initially
output by P[‘Init’](⊥, params.P[i],⊥); and |params.P[i]| is bounded by some
polynomial in |params|, since it is output by the adversary when it is initial-
ized and then only some values are overwritten by ACom(A) to give the security

39

parameter to the protocol and to make sure that the input and output bounds
are the same for all entities. Then, since P ∈ PPT , |si| is bounded by some
polynomial in |params|. Thus, the size of input to P in any event is bounded
by some polynomial in |params|. This implies that the runtime of P in any
event is bounded by a polynomial, and since the number of events is bounded by
p(|params|), then the runtime of P over all events is bounded by a polynomial
in |params|.

The input to the adversary is at most the adversary’s state and the out-
put of PCom(P), which are both bounded by a polynomial in |params| due to
ACom(A), PCom(P), and bounded X -operations. Thus, the input size to A is
bounded by a polynomial and therefore the runtime of A whenever it is run is
bounded by a polynomial. Since the number of events is bounded by p(|params|),
then the runtime of A in the whole execution is bounded by a polynomial in
|params|.

C AuthBroadcast: Authenticated Broadcast Protocol

In this section, we present and analyze the AuthBroadcast protocol, as an exam-
ple of the use of MoSS. AuthBroadcast is a simple authenticated broadcasting
protocol; it is not a contribution by itself, merely an example of the MoSS frame-
work in action - although the approach can be extended to analyze security of
‘real’ secure-communication protocols.

C.1 The AuthBroadcast Protocol

The AuthBroadcast protocol enables a set of entities N to broadcast authenticated
messages to each other, i.e., to validate that a received message was indeed
sent by a member of N. The protocol uses a standard deterministic message
authentication scheme MAC which takes as input a tag length, key, and message
and outputs a tag. (See §C.5 for the formal definition of the authentication
scheme along with its security definition.)

The AuthBroadcast protocol is a PPT algorithm with the operations:

(‘Init’, ‘Key-Gen’, ‘Sec-in’, ‘Broadcast’, ‘Receive’)

where:

– ‘Init’ (Algorithm 20): initializes the local state of the entity.
– ‘Key-Gen’ (Algorithm 21): generates the shared authentication key and sends

it to the rest of the entities.
– ‘Sec-in’ (Algorithm 22): receives a shared-key from another entity.
– ‘Broadcast’ (Algorithm 23): broadcasts an authenticated message.
– ‘Receive’ (Algorithm 24): receives incoming broadcast message, verifies its

authenticity and outputs it (to the application).

40

We first define the protocol’s model specifications in Sec. C.2, the desired
security requirements in Sec. C.3, and the formal definition of the protocol
in Sec. C.4. We conclude this section with a formal security analysis of the
AuthBroadcast protocol in Sec. C.6.

C.2 AuthBroadcast Models

We define three increasingly stronger models in Sec C.2.1, C.2.2, and C.2.3, re-
spectively, each a union of multiple sub-models. The first model includes secure
key sharing assumptions, the second includes secure key sharing and bounded
clock drift assumptions, and the third includes secure key sharing, bounded
clock drift, and bounded-delay communication assumptions. Specifically, the
three models MSecKeyInit, MSecKeyInit

Drift∆clk
, and MSecKeyInit

Drift∆clk ,Delay∆com
are defined as

follows.

MSecKeyInit ≡MKeyShare
X [‘Sec-in’] ∪M

Exclude
P[‘Sec-in’] ∪M

κ≥n
params

MSecKeyInit
Drift∆clk

≡MSecKeyInit ∪MDrift
∆clk

MSecKeyInit
Drift∆clk ,Delay∆com

≡MSecKeyInit ∪MDrift
∆clk
∪MBroadcast

∆com ∪Mf≤∆
∆com,∆clk

for f(∆com, ∆clk) = ∆com+2∆clk. Later, we analyze the AuthBroadcast protocol
under each of these three models.

C.2.1 Secure Key Sharing Model

The first model, MSecKeyInit, is a model that assumes secure key sharing and
valid n and 1κ parameters given to the protocol. It is defined as:

MSecKeyInit ≡MKeyShare
X [‘Sec-in’] ∪M

Exclude
P[‘Sec-in’] ∪M

κ≥n
params

We next define the three sub-models, MKeyShare
X [‘Sec-in’], M

Exclude
P[‘Sec-in’], and Mκ≥n

params.

The MKeyShare
X [‘Sec-in’] model is defined as MKeyShare

X [‘Sec-in’] = (πKeyShare
X [‘Sec-in’], 0), where the

πKeyShare
X [‘Sec-in’] predicate (Algorithm 13) has two objectives. First, it ensures that only

one entity securely shared a key during the protocol’s execution. Second, before
any ‘Broadcast’ or ‘Receive’ operation invoked on any entity i ∈ N, the predicate
ensures that i indeed received the shared key. To that end, the πKeyShare

X [‘Sec-in’] model

predicate verifies that there was a relevant ‘Sec-in’ operation of type ‘X ’ invoked
on entity i. As discussed in Sec. 2.3, the ‘Sec-in’ X -operation invokes the ‘Sec-in’
operation of P with the secure output of some event. The πKeyShare

X [‘Sec-in’] model

predicate ensures that this operation was invoked on entity i with the relevant
secure output of the event where the shared-key was generated.

We use this model for its simplicity. Namely, by ensuring that only one entity
generated and shared an authentication key, we eliminate more complex scenar-
ios where multiple entities shared a key or cases of key replacements. Obviously,

41

such scenarios can be easily supported, however, it would introduce extra com-
plexity which is not needed to demonstrate the framework.

Algorithm 13 πKeyShare
X [‘Sec-in’]

(T , params) Predicate

1: return > if
(

2:
∃ ê ∈ {1, . . . , T.e} s.t. T.opr[ê] = ‘Key-Gen’ and

∀ê′ ∈ {1, . . . , T.e} s.t. ê′ 6= ê: T.opr[ê′] 6= ‘Key-Gen’
. Only one key was shared

3: and if T.opr[ê′] ∈ {‘Broadcast’, ‘Receive’} .
If the authentication key is
needed for a ‘Broadcast’ or ‘Re-
ceive’ event

then ∃ ê′′ ∈ {ê + 1, . . . , ê′ − 1} . Then prior to the event

4:

s.t. T.type[ê′′] = ‘X ’

and T.opr[ê′′] = ‘Sec-in’

and T.ent[ê′′] = T.ent[ê′]

and T.inp[ê′′] = ê

.

The key was securely delivered
to the relevant entity, i.e., the
‘Sec-in’ operation from X was
invoked on that entity, deliv-
ering the secure output of the
‘Key-Gen’ operation to the rele-
vant entity)

The MExclude
P[‘Sec-in’] model is defined as MExclude

P[‘Sec-in’] = (πExclude
P[‘Sec-in’], 0), where the

πExclude
P[‘Sec-in’] predicate makes sure that the adversary does not cause an entity to

receive ‘fake’ securely shared values (using the ‘Sec-in’ operation). It ensures that
the adversary cannot invoke the ‘Sec-in’ operation of P directly; instead, only
invocations of the ‘Sec-in’ X -operation are allowed. Consequently, only values
that were truly returned through sec-out can be received using ‘Sec-in’.

Algorithm 14 πExclude
P[‘Sec-in’](T , params) Predicate

1: return > if
(
@ ê ∈ {1, . . . , T.e} s.t. T.type[ê] = ‘P’ and T.opr[ê] = ‘Sec-in’

)

TheMκ≥n
params model is defined asMκ≥n

params = (πκ≥nparams, 0), where the πκ≥nparams

predicate is shown in Algorithm 15. For the AuthBroadcast protocol, the πκ≥nparams

predicate ensures that the key used by the protocol for authentication (using a
MAC) is at least as long as the tags. Specifically, the predicate checks that for all
i ∈ N, the adversary sets params.P[i].n to |params.1n| and sets params.P[i].1κ

to 1|params|. The values params.P[i].n and params.P[i].1κ are used to initialize
the AuthBroadcast protocol at entity i. Consequently, the MAC can receive suf-
ficient randomness to generate secure n-bit tags for authentication of messages,
where n = |params.1n|.

42

Algorithm 15 πκ≥nparams(T , params) Predicate

1: return > if
(

2: ∀ i ∈ N : (T.params.P[i].n = |params.1n|) and (T.params.P[i].1κ = 1|params|))

Thus, the MSecKeyInit model assumes that a key is securely shared once
among all entities and that valid n and 1κ parameters are given to the protocol.

C.2.2 Secure Key Sharing and Bounded Clock Drift Model

The second model, MSecKeyInit
Drift∆clk

, assumes bounded clock drift in addition to the

secure key sharing and valid n and 1κ parameters given to the protocol assumed
by MSecKeyInit. It is defined as:

MSecKeyInit
Drift∆clk

≡MSecKeyInit ∪MDrift
∆clk

where MSecKeyInit is defined in Sec. C.2.1 and MDrift
∆clk

is defined in Sec. 3.3.

Thus, the MSecKeyInit
Drift∆clk

model assumes that:

1. A key is securely shared once among all entities, and valid n and 1κ param-
eters are given to the protocol (MSecKeyInit).

2. Real time is monotonically increasing, and local time at all entities is always
within ∆clk drift from the real time (MDrift

∆clk
).

C.2.3 Secure Key Sharing, Bounded Clock Drift, and Bounded-Delay
Communication Model

The third model, MSecKeyInit
Drift∆clk ,Delay∆com

, assumes bounded-delay communication

and a sufficiently large freshness interval parameter given to the protocol, in ad-
dition to the secure key sharing, valid n and 1κ parameters given to the protocol,
and bounded clock drift assumed by MSecKeyInit

Drift∆clk
. It is defined as:

MSecKeyInit
Drift∆clk ,Delay∆com

≡MSecKeyInit ∪MDrift
∆clk
∪MBroadcast

∆com ∪Mf≤∆
∆com,∆clk

for f(∆com, ∆clk) = ∆com+2∆clk. TheMSecKeyInit model is defined in Sec. C.2.1

andMDrift
∆clk

is defined in Sec. 3.3. We next define theMBroadcast
∆com

andMf≤∆
∆com,∆clk

sub-models.

The MBroadcast
∆com

model MBroadcast
∆com

= (πBroadcast
∆com

, 0), where the πBroadcast
∆com

predicate, shown in Algorithm 16, verifies that every ‘Broadcast’ packet is re-
ceived as input by every other entity (except the broadcasting one) within ∆com

real time (assuming that the execution did not end yet before that time). Intu-
itively, the model assumes that the communication channel delivers ‘Broadcast’
packets to all other entities.

43

Algorithm 16 πBroadcast
∆com

(T , params) Predicate

1: return
(

2: ∀êB ∈ {1, . . . , T.e− 1}:

3: if T.out[êB] = (‘Broadcast’,m, timeSent, tag) .
If the output includes a broadcast
message (with timestamp and tag)

4: and T.τ [T.e] ≥ T.τ [êB] +∆com .
And execution did not terminate
yet after ∆com real time

5: then ∀i ∈ T.N s.t. i 6= T.ent[êB]: .
Then for each entity except the
broadcasting entity

6: ∃êR ∈ {êB + 1, . . . , T.e} . There is a later event

7: and T.τ [êB] +∆com ≥ T.τ [êR] . Within ∆com real time

8: and T.ent[êR] = i . Where the entity is i

9: and T.opr[êR] = ‘Receive’ . And which is a receive event

10: and T.inp[êR] = (m, timeSent, tag) .
And where the input is the broad-
cast message, timestamp, and tag)

The Mf≤∆
∆com,∆clk

model is defined as Mf≤∆
∆com,∆clk

= (πf≤∆∆com,∆clk
, 0). The

πf≤∆∆com,∆clk
model predicate, shown in Algorithm 17, checks that for every entity

i, the parameter params.P[i].∆ (which is used as the freshness interval in the
AuthBroadcast protocol) is at least as large as some given function f of ∆com

and ∆clk, which are the assumed maximal communication delay and assumed
maximal clock drift, respectively. For the AuthBroadcast protocol, we need to
use the function f(∆com, ∆clk) = ∆com+ 2∆clk. Thus, for this f , the πf≤∆∆com,∆clk
predicate simply checks that ∆com + 2∆clk ≤ params.P[i].∆ for each entity
i. Intuitively, this is necessary for the AuthBroadcast protocol to provide guar-
anteed delivery, because otherwise, although a message packet may arrive, the
receiver’s ∆ parameter (freshness interval) may be too small to consider the
packet fresh based on its timestamp. Then, the packet would be considered old
by the protocol and would not be received successfully.

Algorithm 17 π
f≤∆
∆com,∆clk

(T , params) Predicate

1: return
(
∀ i ∈ T.N : f(∆com, ∆clk) ≤ params.P[i].∆

)

Therefore, the MSecKeyInit
Drift∆clk ,Delay∆com

model assumes that:

1. A key is securely shared once among all entities, and valid n and 1κ param-
eters are given to the protocol (MSecKeyInit).

2. Real time is monotonically increasing, and local time at all entities is always
within ∆clk drift from the real time (MDrift

∆clk
).

3. There is reliable, bounded-delay broadcast communication (MBroadcast
∆com

).
4. ∆com+2∆clk ≤ params.P[i].∆ for every entity i, which is needed for the pro-

tocol to ensure receipt/delivery of valid ‘Broadcast’ packets (Mf≤∆
∆com,∆clk

).

44

C.3 AuthBroadcast Security Requirements

We define three requirements,RBroadcast
Auth∞

,RBroadcast
Authf(∆)

, andRBroadcast
Receive∆

, in Sec. C.3.1,

C.3.2, and C.3.3, respectively. The first ensures authenticity of received broadcast
messages, the second ensures authenticity and freshness, and the third ensures
correct bounded-delay delivery/receipt of all broadcast messages (which implies
authenticity and freshness as well). Later, we show that the AuthBroadcast pro-
tocol polybound-satisfies (as defined in Sec. B.2) these three requirements under
the models defined in Sec. C.2.1, C.2.2, and C.2.3, respectively.

C.3.1 Authentic Broadcast Requirement

The first requirement,RBroadcast
Auth∞

, ensures authenticity of received broadcast mes-
sages and is defined as:

RBroadcast
Auth∞ ≡ {(πBroadcast

Auth∞ , βBroadcast
Auth∞)}

where the predicate πBroadcast
Auth∞

is the predicate πBroadcast
Authf(∆)

defined in Sec. C.3.2, for

f(∆) =∞, and the base function is defined as βBroadcast
Auth∞

(params) = 2−|params.1
n|.

The base function is 2−|params.1
n| because the AuthBroadcast protocol is imple-

mented using some message authentication scheme MAC and |params.1n| is
assumed to be given as the tag length parameter to AuthBroadcast (this is as-
sumed by the Mκ≥n

params model, which is part of all three models later used for

analysis of AuthBroadcast). Thus, we allow the adversary to have 2−|params.1
n|

probability to forge a tag, which would make πBroadcast
Auth∞

evaluate to ⊥. Of course
one could change to negligible probability by using a model which ensures that
the adversary sets params.P[i].n and params.P[i].1κ to be the same.

Thus, the RBroadcast
Auth∞

requirement ensures authentication (but not freshness,
since ∞ is used for the function of the freshness interval in the predicate).

C.3.2 Authentic, Fresh Broadcast Requirement

The second requirement, RBroadcast
Authf(∆)

, ensures authenticity and freshness of re-

ceived broadcast messages and is defined as:

RBroadcast
Authf(∆)

≡ {(πBroadcast
Authf(∆)

, βBroadcast
Authf(∆)

)}

where the base function is defined as βBroadcast
Authf(∆)

(params) = 2−|params.1
n|, for the

same reasons as the βBroadcast
Auth∞

base function discussed in Sec. C.3.1. We define

the predicate πBroadcast
Authf(∆)

next.

The πBroadcast
Authf(∆)

predicate, shown in Algorithm 18, verifies that in a given

protocol, messages that are received were actually broadcast (authentication)
within the last f(∆) real time (freshness), where f(∆) is a function of the re-
ceiving entity’s ∆ parameter (which may be used as a freshness interval by a

45

protocol; note that this value may be different for different entities). In the anal-
ysis of the AuthBroadcast protocol in Sec. C.6, in Claim 2 of Theorem 2, we use
f(∆) = ∆+ 2∆clk, since we assume a maximal clock drift of ∆clk.

Algorithm 18 πBroadcast
Authf(∆)

(T, params) Predicate

1: return
(

2: ∀êR ∈ {1, . . . , T.e}:

3: if T.out[êR] = (‘Receive’,m): .
For each event where a
message is received

4: ∃êB ∈ {1, . . . , êR − 1} . There is a previous
event

5: s.t. T.opr[êB] = ‘Broadcast’: . Which was a ‘Broad-
cast’ event

6: and T.τ [êR]− T.τ [êB] ≤ f(T.params.P[T.ent[êR]].∆) .

Within the last real
time interval deter-
mined by f and the
recipient’s freshness
interval

7: and T.inp[êB].m = m .
Where the input mes-
sage was m)

Thus, the RBroadcast
Authf(∆)

requirement ensures authentication and freshness - i.e.,

all broadcast messages that are received and output as valid by the protocol
were actually broadcast within the last f(∆) real time, where ∆ is the receiving
entity’s ∆ parameter.

C.3.3 Bounded-delay Broadcast Requirement

The third requirement,RBroadcast
Receive∆

, ensures correct bounded-delay delivery/receipt
of all broadcast messages, which implies authenticity and freshness as well. It is
defined as:

RBroadcast
Receive∆ ≡ {(π

Broadcast
Receive∆ , 0)}

where the πBroadcast
Receive∆

predicate, shown in Algorithm 19, requires that all broadcast
messages are correctly delivered/received at every other entity (except the sender
of the broadcast) within ∆ real time (unless the execution terminates before that
time, of course).

46

Algorithm 19 πBroadcast
Receive∆

(T, params) Predicate

1: return
(

2: ∀êB ∈ {1, . . . , T.e− 1} s.t.

3: (T.opr[êB] = ‘Broadcast’ and . For every ‘Broadcast’
event

4: T.τ [T.e] ≥ T.τ [êB] +∆): .
Which was at least ∆
real time before the end
of the execution

5: ∀i ∈ T.N s.t. i 6= T.ent[êB], ∃êR ∈ {êB + 1, . . . , T.e} : .
There is a later event
for each entity except
the broadcasting entity

6: where T.τ [êB] +∆ ≥ T.τ [êR] . Within ∆ real time

7: and T.out[êR] = (‘Receive’, T.inp[êB].m) .
Where the broadcast
message was received
correctly

8: and T.ent[êR] = i . By the relevant entity)

C.4 AuthBroadcast Implementation

The AuthBroadcast protocol is a PPT algorithm with the following operations:

AuthBroadcast = (‘Init’, ‘Key-Gen’, ‘Sec-in’, ‘Broadcast’, ‘Receive’)

described in Algorithms 20-24. The protocol uses the following state variables in
entity i: si .1

κ (key length), si .n (length of tags), si .∆ (maximal allowed delay,
for freshness), and si .k (authentication key).

Algorithm 20 AuthBroadcastMAC [‘Init’](s, inp, clk)

1: params← inp

2: if s = ⊥ then . This is the first call to ‘Init’

3: 1κ ← params.1κ . Initialize key length

4: n← params.n . Initialize tag length

5: ∆← params.∆ . Initialize freshness interval

6: k ← ⊥ . Initialize authentication key

7: return (1κ, n,∆, k)

8: end if

9: return ((1κ, n,∆, k),⊥,⊥)

Algorithm 21 AuthBroadcastMAC [‘Key-Gen’](s, inp, clk)

1: s.k R← {0, 1}|s.1
κ| . Choose a shared key uniformly

at random

2: return (s,⊥, s.k) . Share the key by returning it in
sec-out

47

Algorithm 22 AuthBroadcastMAC [‘Sec-in’](s, inp, clk)

1: if inp 6= ⊥ then s.k ← inp . Save the shared key

2: return (s,⊥,⊥)

Algorithm 23 AuthBroadcastMAC [‘Broadcast’](s, inp, clk)

1: m← inp

2: if (s.k 6= ⊥) then

3: timeSent← clk

4: tag ← MACs.n(s.k,m || timeSent) . Compute the tag over message
and local time

5: out← (‘Broadcast’,m, timeSent, tag) .
Return ‘Broadcast’, the message,
local time, and tag

6: end if

7: return (s, out,⊥)

Algorithm 24 AuthBroadcastMAC [‘Receive’](s, inp, clk)

1: (m, timeSent, tag)← inp ; out← ⊥

2: if
(
s.k 6= ⊥

3: and MACs.n(s.k,m || timeSent) = tag . Check if the tag is valid

4: and clk − timeSent ≤ s.∆
)
: . Check freshness

5: out← (‘Receive’,m) . If all Ok, output m

6: end if

7: return (s, out,⊥)

C.5 Message Authentication Scheme

We now provide definitions for message authentication scheme and asymptoti-
cally unforgeable message authentication scheme.

Definition 9. A message authentication scheme MAC is a deterministic algo-
rithm MACn(k,m) → tag, with inputs tag length n, shared key k, and message
m, and output n-bit tag tag.

Definition 10 (Asymptotically Unforgeable). We call a message authen-
tication scheme MACasymptotically unforgeable (asymptotically UF) if for ev-
ery PPT adversary A and every κ, n ∈ N such that κ ≥ n (where κ is the
the key length and n is the tag length), the probability that A ‘wins’ the game
ExpUF

A,MAC(κ, n) is at most negligibly greater (in κ) than 2−n, i.e.:

(∀ A ∈ PPT and κ, n ∈ N | κ ≥ n) :

Pr[ExpUF
A,MAC(κ, n) = >] ≤ 2−n +Negl(κ)

(14)

where ExpUF
A,MAC(κ, n) is defined in Algorithm 25.

48

Algorithm 25 ExpUF
A,MAC(κ, n)

1: k R← {0, 1}κ

2: S = ∅

3: define: OTag(m) : tag ← MACn(k,m)

S ← S ∪ {m}

return tag

4: define: OVer(m, tag) : if MACn(k,m) = tag then return >

else return ⊥

5: m′, tag′ ← AOTag(·),OVer(·,·)(1κ, n)

6: if m′ /∈ S and OVer(m′, tag′) = > then return >

7: else return ⊥

8: end if

C.6 Security Analysis

The MoSS framework allows the analysis of the same protocol under differ-
ent models, as we demonstrate here. Specifically, we present the analysis of
AuthBroadcast in several steps, where in each step, we prove that AuthBroadcast
satisfies a requirement - assuming increasingly stronger models:

1. We first show that AuthBroadcast ensures authentication of received mes-
sages assuming that a key is shared securely once among all entities and
valid n and 1κ parameters are given to the protocol. Namely, we show
that AuthBroadcast polybound-satisfies RBroadcast

Auth∞
under MSecKeyInit using

X -operations {‘Sec-in’}.
2. We then show that AuthBroadcast ensures authentication and freshness of

received messages under a stronger model that also assumes a weak-level of
clock synchronization (bounded clock drift). Namely, we show that AuthBroadcast

polybound-satisfiesRBroadcast
Authf(∆)

underMSecKeyInit
Drift∆clk

using X -operations {‘Sec-in’}
for f(∆) = ∆+ 2∆clk, where ∆clk is the assumed maximal clock drift.

3. Finally, we show that AuthBroadcast ensures correct bounded-delay deliv-
ery/receipt of broadcast messages (which implies authenticity and freshness
as well) under an even stronger model which also assumes a bounded de-
lay of communication and a sufficiently large freshness interval given to
the protocol. Specifically, we show that AuthBroadcast polybound-satisfies
RBroadcast

Receive∆com
underMSecKeyInit

Drift∆clk ,Delay∆com
using X -operations {‘Sec-in’}, where

∆clk is the assumed maximal clock drift and ∆com is the assumed maximal
communication delay.

Where the notion of ‘polytime-satisfying’ a requirement is defined in Definition 7
in Sec. B.2.

The reader may make the following two observations. First, the models
used for the analysis of AuthBroadcast are composed of multiple sub-models
which are generic to varying degrees. For example, the MSecKeyInit model is

defined as MSecKeyInit ≡ MKeyShare
X [‘Sec-in’] ∪M

Exclude
P[‘Sec-in’] ∪M

κ≥n
params, where the mod-

49

els MKeyShare
X [‘Sec-in’] and MExclude

P[‘Sec-in’] enforce the secure key sharing assumption and

the model Mκ≥n
params enforces the assumption that valid n and 1κ parameters

are given to the protocol. These are generic, since MKeyShare
X [‘Sec-in’] and MExclude

P[‘Sec-in’]

can be reused for analysis of other shared-key protocols, and Mκ≥n
params can be

reused for analysis of other protocols which assume that some parameter is
bounded by the length of some parameter. Second, by Lemma 3 (Sec. 5), it fol-

lows that AuthBroadcast also polybound-satisfies RBroadcast
Auth∞

under MSecKeyInit
Drift∆clk

,

polybound-satisfiesRBroadcast
Auth∞

underMSecKeyInit
Drift∆clk ,Delay∆com

, and polybound-satisfies

RBroadcast
Authf(∆)

underMSecKeyInit
Drift∆clk ,Delay∆com

, sinceMSecKeyInit
Drift∆clk

is stronger thanMSecKeyInit

and MSecKeyInit
Drift∆clk ,Delay∆com

is stronger than MSecKeyInit
Drift∆clk

. These two observations

show some of the modular qualities of the MoSS framework.

Theorem 2. Let MAC be an asymptotically unforgeable message authentication
scheme, as defined in Appendix C.5. Let X be {‘Sec-in’}, where ‘Sec-in’ is a
bounded X -operation (see Sec. 2.3 for discussion of ‘Sec-in’ and Sec. B.4 for
discussion of bounded X -operations). Then:

Claim 1. AuthBroadcastMAC polybound-satisfies RBroadcast
Auth∞

underMSecKeyInit us-
ing X , i.e.:

AuthBroadcastMAC |=MSecKeyInit,X
polybound

RBroadcast
Auth∞

WhereMSecKeyInit is defined in Sec. C.2.1 and RBroadcast
Auth∞

is defined in Sec. C.3.1.

Claim 2. AuthBroadcastMAC polybound-satisfies RBroadcast
Authf(∆)

underMSecKeyInit
Drift∆clk

us-

ing X for f(∆) = ∆+ 2∆clk, i.e.:

AuthBroadcastMAC |=
MSecKeyInit

Drift∆clk
,X

polybound
RBroadcast

Authf(∆)

for f(∆) = ∆+2∆clk, whereMSecKeyInit
Drift∆clk

is defined in Sec. C.2.2 and RBroadcast
Authf(∆)

is defined in Sec. C.3.2.

Claim 3. AuthBroadcastMAC polybound-satisfies RBroadcast
Receive∆com

underMSecKeyInit
Drift∆clk

,Delay∆com

using X -operations {‘Sec-in’}, i.e.:

AuthBroadcastMAC |=
MSecKeyInit

Drift∆clk
,Delay∆com

,X

polybound
RBroadcast

Receive∆com

Where MSecKeyInit
Drift∆clk

,Delay∆com
is defined in Sec. C.2.3 and RBroadcast

Receive∆com
is defined

in Sec. C.3.3.

50

C.6.1 Proof of Claim 1

In this section, we prove Claim 1 of Theorem 2 - that AuthBroadcast ensures
authentication of received messages assuming that a key is shared securely once
among all entities and valid n and 1κ parameters are given to the protocol.
The claim is restated below, for an asymptotically unforgeable message authen-
tication scheme MAC (as defined in Appendix C.5) and X = {‘Sec-in’}, where
‘Sec-in’ is a bounded X -operation (see Sec. 2.3 for discussion of ‘Sec-in’ and
Sec. B.4 for discussion of bounded X -operations).

Claim 1. AuthBroadcastMAC polybound-satisfiesRBroadcast
Auth∞

underMSecKeyInit us-
ing X , i.e.:

AuthBroadcastMAC |=MSecKeyInit,X
polybound

RBroadcast
Auth∞

WhereMSecKeyInit is defined in Sec. C.2.1 andRBroadcast
Auth∞

is defined in Sec. C.3.1.

We prove Claim 1 by contradiction - namely, by showing that if AuthBroadcastMAC

does not polybound-satisfy RBroadcast
Auth∞

under MSecKeyInit using X , then MAC is
not asymptotically unforgeable.

Sketch of the Proof of Claim 1.

We complete the proof in three steps:
1. We first define an algorithm A′ and describe how it works. This includes

defining a modified version of AuthBroadcastMAC , called AuthBroadcast. We
also define an algorithm A′′, which is used by A′.

2. Then we show that if AuthBroadcastMAC does not polybound-satisfyRBroadcast
Auth∞

under MSecKeyInit using X , then there exists a PPT adversary A such that

A |=X
polybound

MSecKeyInit and A has probability non-negligibly (in the size of

input parameters) greater than 2−n to ‘win’ against the AuthBroadcast pro-
tocol (w.r.t requirement RBroadcast

Auth∞
), where n is a tag length parameter.

3. Lastly, we show that A′′ can ‘win’ the game ExpUF
A′′,MAC(κ, n) with proba-

bility greater than 2−n +Negl(κ) for some κ ≥ n, which implies that MAC
is not an asymptotically unforgeable message authentication scheme.

Step 1: Protocol AuthBroadcast, Adversary A′, and Subroutine A′′

A′ takes params ∈ {0, 1}∗ as input and works as follows:
1. A′ modifies the code for AuthBroadcastMAC into AuthBroadcast. Specifically,

line 4 in the ‘Broadcast’ function of AuthBroadcast (see Algorithm 23) is
replaced by:

tag ← Tag(m || timeSent)

A′ also changes line 3 in the ‘Receive’ function of AuthBroadcast (see Algo-
rithm 24) to:

and Ver(m || timeSent, tag) = >

51

A′ also adds the following line after line 6 in the ‘Init’ function of AuthBroadcast
(see Algorithm 20):

Init(1κ, n)

Tag and Ver are initially placeholders. When Init(1κ, n) is invoked, it passes
the values κ and n to A′ and starts the game ExpUF

A′′,MAC(κ, n) (see Alg. 25)
if it is not already started, where A′′ is an algorithm controlled by A′. When
the game gets to line 5 (in Alg. 25), A′′ gets access to oracles OTag and OVer.
It then makes Tag point to OTag and Ver point to OVer. Note that OTag(·)
is an oracle that takes a message m as input and returns MACn(k,m),
and OVer(·, ·) is an oracle that takes inputs m and tag and returns > if
MACn(k,m) = tag and ⊥ otherwise, where k is a key chosen uniformly from
{0, 1}κ and used by both oracles.

2. A′ executes T ← ExecX
ACom(A),PCom(AuthBroadcast)

(params), where A is dis-

cussed below. During the execution, as long as there is at least one entity,
AuthBroadcast[‘Init’] is invoked and the ExpUF

A′′,MAC(κ, n) is started as de-
scribed above.

3. A′ searches T for an event êR such that the output of êR is (‘Receive’,m), yet
there is no previous ‘Broadcast’ event êB where the input is m. If A′ finds
such an event, it passes T.inp[êR].m || T.inp[êR].timeSent, T.inp[êR].tag to
A′′, which outputs this to the (still ongoing) ExpUF

A′′,MAC(κ, n) game; other-

wise it passes a pair of randomly chosen strings x
R← {0, 1}n, tag R← {0, 1}n,

to A′′, which outputs x, tag to the ExpUF
A′′,MAC(κ, n) game.

Step 2: Adversary A

From Definition 7, if AuthBroadcastMAC does not polybound-satisfy RBroadcast
Auth∞

under MSecKeyInit using X = {‘Sec-in’} AuthBroadcastMAC , then there exists a

PPT adversary A |=X
polybound

MSecKeyInit such that:

ε
πBroadcast
Auth∞

ACom(A),PCom(AuthBroadcastMAC),X (params) > βBroadcast
Auth∞ (params)+Negl(|params|)

(15)
where:

ε
πBroadcast
Auth∞

ACom(A),PCom(AuthBroadcastMAC),X (params) ≡

Pr

[
πBroadcast

Auth∞
(T, params) = ⊥, where

T ← ExecXACom(A),PCom(AuthBroadcastMAC)(params)

]
and βBroadcast

Auth∞
(params) = 2−|params.1

n|.

We show now that Equation 15 implies Equation 16, as stated in Lemma 6
below. Note that the difference between Eq. 15 and Eq. 16 is the protocol -
AuthBroadcastMAC is changed to AuthBroadcast.

52

Lemma 6. Let X = {‘Sec-in’}. Suppose that there exists a PPT adversary

A |=X
polybound

MSecKeyInit which satisfies Equation 15. Then holds:

ε
πBroadcast

Auth∞
ACom(A),PCom(AuthBroadcast),X (params) > βBroadcast

Auth∞ (params) +Negl(|params|)
(16)

Where:

ε
πBroadcast

Auth∞
ACom(A),PCom(AuthBroadcast),X (params) ≡

Pr

[
πBroadcast

Auth∞
(T, params) = ⊥, where

T ← ExecX
ACom(A),PCom(AuthBroadcast)

(params)

]

and βBroadcast
Auth∞

(params) = 2−|params.1
n|.

Proof of Lemma 6.

From Equation 15,A is a PPT adversary that is able to cause the AuthBroadcastMAC

protocol to correctly receive a message without previously broadcasting that
message (with probability > 2−|params.1

n| + Negl(|params|)). Recall that, ac-
cording to Alg. 23, the ‘Broadcast’ function of the protocol outputs the mes-
sage m, local time timeSent, and tag MACs.n(s.k,m || timeSent), where s.k
is unknown to A due to secure key sharing (except for only negligible proba-
bility, as ensured by MSecKeyInit) and s.n = |params.1n| due to Mκ≥n

params ∈
MSecKeyInit (except for negligible probability). Also recall that, according to
Alg. 24, the ‘Receive’ function of the protocol, for inputs m, timeSent, tag, ver-
ifies that MACs.n(s.k,m || timeSent) = tag. This means that, with probability
> 2−|params.1

n| +Negl(|params|), A is able to output a message m, timestamp
timeSent, and tag tag such that MACs.n(s.k,m || timeSent) = tag.

Executions of ExecX
ACom(A),PCom(AuthBroadcast)

(params) only differ from exe-

cutions of ExecXACom(A),PCom(AuthBroadcastMAC)(params) by the added call to Init in
‘Init’, which does not alter the state or the outputs of ‘Init’, and the changes to
‘Broadcast’ and ‘Receive’, which cause messages to be authenticated using the
OTag and OVer oracles in executions of ExecX

ACom(A),PCom(AuthBroadcast)
(params),

instead of using MACs.n(s.k, ·), where s is the state of some entity and s.k is a
key chosen uniformly from {0, 1}|s.1κ|, shared securely among the entities, and
unknown to A. But OTag(·) uses MACn(k, ·) to compute a tag over a message,
OVer(·, ·) uses MACn(k, ·) to verify that a tag is correct, and both oracles use
the same key chosen uniformly from {0, 1}κ, where n is the tag length and κ is
the key length used by the entities. Thus, the executions should be equivalent
to A, which implies Equation 16.

53

Step 3: Completing the proof of Claim 1

We can now complete the proof of Claim 1. That is, we show that adversary A′′
wins the ExpUF

A′′,MAC(κ, n) game with probability greater than 2−n + Negl(κ)
for κ ≥ n.

Proof. Suppose that AuthBroadcastMAC does not polybound-satisfy RBroadcast
Auth∞

under MSecKeyInit using X . Then Equation 15 holds (from Definition 7).
By Lemma 6, Equation 16 holds. This means that when A′ runs T ←

ExecX
ACom(A),PCom(AuthBroadcast)

(params), A′ has probability > 2−|params.1
n| +

Negl(|params|) to find that T contains an event êR such that the output of êR is
(‘Receive’,m), yet there is no previous ‘Broadcast’ event êB where the input is m.
Whenever this is the case,A′ gives T.inp[êR].m || T.inp[êR].timeSent, T.inp[êR].tag
to A′′, and A′′ outputs these values. Notice that during the execution, there was
no ‘Broadcast’ event which could have output m with timestamp timeSent,
which means that there was no such corresponding query to the OTag oracle.
Thus, for these values, the OVer oracle should return > in line 6 of Alg. 25. This
implies that A′′ has probability > 2−|params.1

n| + Negl(|params|) to win the
ExpUF

A′′,MAC(κ, n) game, where n and κ are the tag length and key length, respec-

tively, used by entities during execution of ExecX
ACom(A),PCom(AuthBroadcast)

(params),

i.e.:
Pr[ExpUF

A′′,MAC(κ, n) = >] > 2−|params.1
n| +Negl(|params|) (17)

Since n is the tag length and κ is the key length used by the entities dur-
ing the execution of ExecX

ACom(A),PCom(AuthBroadcast)
(params) and A polybound-

satisfies MSecKeyInit using X , then there is only negligible probability that n 6=
|params.1n| or κ 6= |params|, due to model Mκ≥n

params ∈ MSecKeyInit. Thus,
Equation 17 must hold for κ, n where n = |params.1n| and κ = |params| ≥
|params.1n|. Then:

Pr[ExpUF
A′′,MAC(κ, n) = >] > 2−n +Negl(κ)

for κ ≥ n. Also, by Theorem 1, the total runtime of A is bounded by a poly-
nomial, since ‘Sec-in’ is a bounded X -operation. This implies that the length
of the transcript T is bounded by a polynomial as well, and the time it takes
A’ to search T should be polynomial, and thus the total runtime of A′′ should
be polynomial. Therefore, since a polynomial adversary wins with more than
2−n + Negl(κ) probability in the unforgeability game against MAC, then MAC
is not asymptotically unforgeable (according to Def. 10 in Sec. C.5).

C.6.2 Proof of Claim 2

In this section, we prove Claim 2 of Theorem 2 - that AuthBroadcast ensures
freshness and authentication assuming secure key sharing, valid n and 1κ pa-
rameters given to the protocol, and bounded clock drift. Note that this proof
is similar to the proof of Claim 2 of Theorem 2 (see Sec. C.6.1), with some

54

changes due to the bounded clock drift assumption and the freshness require-
ment. The claim is restated below, for an asymptotically unforgeable message
authentication scheme MAC (as defined in Appendix C.5) and X = {‘Sec-in’},
where ‘Sec-in’ is a bounded X -operation (see Sec. 2.3 for discussion of ‘Sec-in’
and Sec. B.4 for discussion of bounded X -operations).

Claim 2. AuthBroadcastMAC polybound-satisfiesRBroadcast
Authf(∆)

underMSecKeyInit
Drift∆clk

us-

ing X for f(∆) = ∆+ 2∆clk, i.e.:

AuthBroadcastMAC |=
MSecKeyInit

Drift∆clk
,X

polybound
RBroadcast

Authf(∆)

for f(∆) = ∆+ 2∆clk, whereMSecKeyInit
Drift∆clk

is defined in Sec. C.2.2 and RBroadcast
Authf(∆)

is defined in Sec. C.3.2.

We prove Claim 2 by contradiction - namely, by showing that for f(∆) =
∆ + 2∆clk, if AuthBroadcastMAC does not polybound-satisfy RBroadcast

Authf(∆)
under

MSecKeyInit
Drift∆clk

using X , then MAC is not asymptotically unforgeable.

Sketch of the Proof of Claim 2.

We complete the proof in three steps:
1. We first define an algorithm A′ and describe how it works. This includes

defining a modified version of AuthBroadcastMAC , called AuthBroadcast. We
also define an algorithm A′′, which is used by A′.

2. Then we show that for f(∆) = ∆ + 2∆clk, if AuthBroadcastMAC does not

polybound-satisfy RBroadcast
Authf(∆)

underMSecKeyInit
Drift∆clk

using X , then there exists a

PPT adversary A |=X
polybound

MSecKeyInit
Drift∆clk

that has probability non-negligibly

(in the size of input parameters) greater than 2−n to ‘win’ against the
AuthBroadcast protocol (w.r.t requirement RBroadcast

Authf(∆)
), where n is a tag

length parameter.
3. Lastly, we show that A′′ can ‘win’ the game ExpUF

A′′,MAC(κ, n) with proba-
bility greater than 2−n +Negl(κ) for some κ ≥ n, which implies that MAC
is not an asymptotically unforgeable message authentication scheme.

Step 1: Protocol AuthBroadcast, Adversary A′, and Subroutine A′′

A′ takes params ∈ {0, 1}∗ as input and works as follows:
1. A′ modifies the code for AuthBroadcastMAC into AuthBroadcast. Specifically,

line 4 in the ‘Broadcast’ function of AuthBroadcast (see Algorithm 23) is
replaced by:

tag ← Tag(m || timeSent)

A′ also changes line 3 in the ‘Receive’ function of AuthBroadcast (see Algo-
rithm 24) to:

and Ver(m || timeSent, tag) = >

55

A′ also adds the following line after line 6 in the ‘Init’ function of AuthBroadcast
(see Algorithm 20):

Init(1κ, n)

Tag and Ver are initially placeholders. When Init(1κ, n) is invoked, it passes
the values κ and n to A′ and starts the game ExpUF

A′′,MAC(κ, n) (see Alg. 25)
if it is not already started, where A′′ is an algorithm controlled by A′. When
the game gets to line 5 (in Alg. 25), A′′ gets access to oracles OTag and OVer.
It then makes Tag point to OTag and Ver point to OVer. Note that OTag(·)
is an oracle that takes a message m as input and returns MACn(k,m),
and OVer(·, ·) is an oracle that takes inputs m and tag and returns > if
MACn(k,m) = tag and ⊥ otherwise, where k is a key chosen uniformly from
{0, 1}κ and used by both oracles.

2. A′ executes T ← ExecX
ACom(A),PCom(AuthBroadcast)

(params), where A is dis-

cussed below. During the execution, as long as there is at least one entity,
AuthBroadcast[‘Init’] is invoked and the ExpUF

A′′,MAC(κ, n) is started as de-
scribed above.

3. A′ searches T for an event êR such that the output of êR is (‘Receive’,m),
yet there is no previous ‘Broadcast’ event êB where the input is m and
where the ‘Broadcast’ event happened within params.P.∆+2∆clk real time
of the event êR (where ∆clk is the maximum clock drift value assumed in

the model MSecKeyInit
Drift∆clk

). In the case that A′ finds such an event, it passes

T.inp[êR].m || T.inp[êR].timeSent, T.inp[êR].tag to A′′, which outputs this
to the (still ongoing) ExpUF

A′′,MAC(κ, n) game; otherwise it passes a pair of

randomly chosen strings x
R← {0, 1}n, tag R← {0, 1}n, to A′′, which outputs

x, tag to the ExpUF
A′′,MAC(κ, n) game.

Step 2: Adversary A

From Definition 7, if for f(∆) = ∆+2∆clk, AuthBroadcastMAC does not polybound-

satisfy RBroadcast
Authf(∆)

under MSecKeyInit
Drift∆clk

using X = {‘Sec-in’} AuthBroadcastMAC ,

then there exists a PPT adversary A |=X
polybound

MSecKeyInit
Drift∆clk

such that:

ε
πBroadcast
Authf(∆)

ACom(A),PCom(AuthBroadcastMAC),X (params) > βBroadcast
Authf(∆)

(params)+Negl(|params|)
(18)

where:

ε
πBroadcast
Authf(∆)

ACom(A),PCom(AuthBroadcastMAC),X (params) ≡

Pr

[
πBroadcast

Authf(∆)
(T, params) = ⊥, where

T ← ExecXACom(A),PCom(AuthBroadcastMAC)(params)

]

and βBroadcast
Authf(∆)

(params) = 2−|params.1
n|, for f(∆) = ∆+ 2∆clk.

56

We show now that Equation 18 implies Equation 19, as stated in Lemma 7
below. Note that the difference between Eq. 18 and Eq. 19 is the protocol -
AuthBroadcastMAC is changed to AuthBroadcast.

Lemma 7. Let X = {‘Sec-in’}. Suppose that there exists a PPT adversary

A |=X
polybound

MSecKeyInit
Drift∆clk

which satisfies Equation 18, for f(∆) = ∆+2∆clk. Then

holds:

ε
πBroadcast

Authf(∆)

ACom(A),PCom(AuthBroadcast),X (params) > βBroadcast
Authf(∆)

(params) +Negl(|params|)
(19)

Where:

ε
πBroadcast

Authf(∆)

ACom(A),PCom(AuthBroadcast),X (params) ≡

Pr

[
πBroadcast

Authf(∆)
(T, params) = ⊥, where

T ← ExecX
ACom(A),PCom(AuthBroadcast)

(params)

]

and βBroadcast
Authf(∆)

(params) = 2−|params.1
n|, for f(∆) = ∆+ 2∆clk.

Proof of Lemma 7.

From Equation 15,A is a PPT adversary that is able to cause the AuthBroadcastMAC

protocol to correctly receive a message without previously broadcasting that
message within the last params.P.∆ + 2∆clk real time (with probability >
2−|params.1

n|+Negl(|params|)). Recall that, according to Alg. 23, the ‘Broadcast’
function of the protocol outputs the message m, local time timeSent, and tag
MACs.n(s.k,m || timeSent), where s.k is unknown to A due to secure key
sharing (except for only negligible probability, as ensured by MSecKeyInit) and

s.n = |params.1n| due to Mκ≥n
params ∈ M

SecKeyInit
Drift∆clk

(except for negligible proba-

bility). Also recall that, according to Alg. 24, the ‘Receive’ function of the proto-
col, for inputs m, timeSent, tag, verifies that MACs.n(s.k,m || timeSent) = tag
and that the local time at the receiver minus the timestamp is ≤ s.∆. Since,
according to MSecKeyInit

Drift∆clk
, local time is within ∆clk of the real time, this implies

that ‘Receive’ only accept messages sent within the last params.P.∆+2∆clk real
time (except for negligible probability). Thus, with probability > 2−|params.1

n|+
Negl(|params|), A is able to output a message m, timestamp timeSent, and tag
tag which it was not previously given such that MACs.n(s.k,m || timeSent) =
tag and the local time at the receiver minus timeSent is ≤ s.∆.

Executions of ExecX
ACom(A),PCom(AuthBroadcast)

(params) only differ from exe-

cutions of ExecXACom(A),PCom(AuthBroadcastMAC)(params) by the added call to Init in
‘Init’, which does not alter the state or the outputs of ‘Init’, and the changes to
‘Broadcast’ and ‘Receive’, which cause messages to be authenticated using the
OTag and OVer oracles in executions of ExecX

ACom(A),PCom(AuthBroadcast)
(params),

instead of using MACs.n(s.k, ·), where s is the state of some entity and s.k is a

57

key chosen uniformly from {0, 1}|s.1κ|, shared securely among the entities, and
unknown to A. But OTag(·) uses MACn(k, ·) to compute a tag over a message,
OVer(·, ·) uses MACn(k, ·) to verify that a tag is correct, and both oracles use
the same key chosen uniformly from {0, 1}κ, where n is the tag length and κ is
the key length used by the entities. Thus, the executions should be equivalent
to A, which implies Equation 19.

Completing the proof of Claim 2

We can now complete the proof of Claim 2. That is, we show that adversary A′′
wins the ExpUF

A′′,MAC(κ, n) game with probability greater than 2−n + Negl(κ)
for κ ≥ n.

Proof. Suppose that for f(∆) = ∆+2∆clk, AuthBroadcastMAC does not polybound-

satisfy RBroadcast
Authf(∆)

under MSecKeyInit
Drift∆clk

using X . Then Equation 18 holds (from

Definition 7).
By Lemma 7, Equation 19 holds. This means that when A′ runs T ←

ExecX
ACom(A),PCom(AuthBroadcast)

(params), A′ has probability > 2−|params.1
n| +

Negl(|params|) to find that T contains an event êR such that the output of êR

is (‘Receive’,m), yet there is no previous ‘Broadcast’ event êB where the input
is m and where the ‘Broadcast’ event happened within params.P.∆ + 2∆clk

real time of the event êR. Whenever this is the case, then A′ gives to A′′ the
values T.inp[êR].m || T.inp[êR].timeSent, T.inp[êR].tag, and A′′ outputs these
values. Notice that during the execution, there was no ‘Broadcast’ event which
could have output m with timestamp timeSent, which means that there was no
such corresponding query to the OTag oracle. Thus, for these values, the OVer
oracle should return > in line 6 of Alg. 25. This implies that A′′ has probability
> 2−|params.1

n| + Negl(|params|) to win the ExpUF
A′′,MAC(κ, n) game, where n

and κ are the tag length and key length, respectively, used by the entities during
the execution of ExecX

ACom(A),PCom(AuthBroadcast)
(params), i.e.:

Pr[ExpUF
A′′,MAC(κ, n) = >] > 2−|params.1

n| +Negl(|params|) (20)

Since n is the tag length and κ is the key length used by the entities dur-
ing the execution of ExecX

ACom(A),PCom(AuthBroadcast)
(params) and A polybound-

satisfies MSecKeyInit
Drift∆clk

using X , then there is only negligible probability that n 6=
|params.1n| or κ 6= |params|, due to model Mκ≥n

params ∈ M
SecKeyInit
Drift∆clk

. Thus,

Equation 20 must hold for κ, n where n = |params.1n| and κ = |params| ≥
|params.1n|. Then:

Pr[ExpUF
A′′,MAC(κ, n) = >] > 2−n +Negl(κ)

for κ ≥ n. Also, by Theorem 1, the total runtime of A is bounded by a poly-
nomial, since ‘Sec-in’ is a bounded X -operation. This implies that the length

58

of the transcript T is bounded by a polynomial as well, and the time it takes
A’ to search T should be polynomial, and thus the total runtime of A′′ should
be polynomial. Therefore, since a polynomial adversary wins with more than
2−n + Negl(κ) probability in the unforgeability game against MAC, then MAC
is not asymptotically unforgeable (according to Def. 10 in Sec. C.5).

C.6.3 Proof of Claim 3

In this section, we prove Claim 3 of Theorem 2 - that AuthBroadcast ensures
correct bounded-delay delivery/receipt of broadcast messages assuming secure
key sharing, valid n and 1κ parameters given to the protocol, bounded clock
drift, bounded-delay communication, and a sufficiently large freshness interval
parameter given to the protocol. That this implies authenticity and freshness
as well. The claim is restated below, for an asymptotically unforgeable message
authentication scheme MAC (as defined in Appendix C.5) and X = {‘Sec-in’},
where ‘Sec-in’ is a bounded X -operation (see Sec. 2.3 for discussion of ‘Sec-in’
and Sec. B.4 for discussion of bounded X -operations).

Claim 3. AuthBroadcastMAC polybound-satisfiesRBroadcast
Receive∆com

underMSecKeyInit
Drift∆clk ,Delay∆com

using X -operations {‘Sec-in’}, i.e.:

AuthBroadcastMAC |=
MSecKeyInit

Drift∆clk
,Delay∆com

,X

polybound
RBroadcast

Receive∆com

Where MSecKeyInit
Drift∆clk ,Delay∆com

is defined in Sec. C.2.3 and RBroadcast
Receive∆com

is defined

in Sec. C.3.3.

We prove Claim 3 by contradiction - namely, by showing that if AuthBroadcastMAC

does not polybound-satisfy RBroadcast
Receive∆com

under MSecKeyInit
Drift∆clk ,Delay∆com

using X ,

then MAC does not satisfy the definition of message authentication scheme.

Proof. From Definition 7, if AuthBroadcastMAC does not polybound-satisfyRBroadcast
Receive∆com

underMSecKeyInit
Drift∆clk ,Delay∆com

using X = {‘Sec-in’}, then there exists a PPT adver-

sary A |=X
polybound

MSecKeyInit
Drift∆clk ,Delay∆com

such that:

ε
πBroadcast
Receive∆

ACom(A),PCom(AuthBroadcastMAC),X (params) > Negl(|params|) (21)

where:

ε
πBroadcast
Receive∆

ACom(A),PCom(AuthBroadcastMAC),X (params) ≡

Pr

[
πBroadcast

Receive∆
(T, params) = ⊥, where

T ← ExecXACom(A),PCom(AuthBroadcastMAC)(params)

]
That is, the adversary A is able to prevent the successful reception of a broadcast
message with non-negligible probability.

59

However, the model MSecKeyInit
Drift∆clk ,Delay∆com

ensures that, except for negligible

probability, if the output of an event is (‘Broadcast’,m, timeSent, tag) (i.e., some
entity i broadcasts a message), then for every other entity j, there is a later
‘Receive’ event at j within ∆com real time where (m, timeSent, tag) is received
as input (see Alg. 16), and ∆com + 2∆clk ≤ params.P[i].∆ for every entity i
(see Algorithm 17, for f(∆com, ∆clk) = ∆com+2∆clk). Note that we can assume
that this is possible for an adversary A which satisfies MpolyAdv, because the
protocol’s states only grow in the ‘Init’, ‘Key-Gen’, and ‘Sec-in’ operations, the
outputs of ‘Broadcast’ are at most a fixed amount longer than the inputs, and
A can control the number of ‘Broadcast’ events and the broadcast messages, so
it can ensure that it has enough runtime left to deliver all broadcast messages.

Recall that, according to Alg. 23, the ‘Broadcast’ function of AuthBroadcastMAC ,
for input messagem, outputs (‘Broadcast’,m, timeSent,MACs.n(s.k,m || timeSent)),
where s.n is the length of tags used, timeSent is the local time, and s.k is
a key shared securely among all entities (except for negligible probability, as

ensured by MSecKeyInit
Drift∆clk ,Delay∆com

). Also recall that, according to Alg. 24, the

‘Receive’ function of the AuthBroadcast protocol, for inputs m, timeSent, tag,
verifies that MACs.n(s.k,m || timeSent) = tag and that the local time at the
receiver minus the timestamp is ≤ s.∆. If this holds, the ‘Receive’ function
outputs (‘Receive’,m).

Thus, since A |=X
polybound

MSecKeyInit
Drift∆clk ,Delay∆com

, then, with overwhelming prob-

ability, for every ‘Broadcast’ event with input m at entity i, for every other entity
j, there is a later ‘Receive’ event where (m, timeSent,MACs.n(s.k,m || timeSent))
is received as input at j within∆com real time. SinceMSecKeyInit

Drift∆clk ,Delay∆com
ensures

that∆com+2∆clk ≤ params.P.∆ and that local time is always within∆clk of the
real time (except with negligible probability), then the receiver’s local time can-
not be more than the timeSent+params.P.∆. Also, byMSecKeyInit, all entities
use the same tag length and the same securely shared key (except with negli-
gible probability). Consequently, if some message is broadcast, yet the message
is not successfully received, then this implies that MACn(k,m || timeSent) 6=
MACn(k,m || timeSent) (in the ‘Receive’ function), where n and k are the tag
length and key used by the entities, respectively. This implies that MAC returns
different values when evaluated multiple times on the same inputs, which means
that it is not a deterministic function. This contradicts Definition 9 in Sec. C.5,
implying that MAC is not a message authentication scheme.

D Additional Specification Predicates

D.1 Examples of Models and Model Predicates

D.1.1 Faulty Entities model MF : Enforce Faulty Entities Set ⊥

We now define the MF fault model, which ensures that the adversary’s output
declares all the faulty entities. The base function for this model is 0, i.e., MF =
(πF, 0), where we define the πF predicate in Algorithm 26.

60

Algorithm 26 πF(T , params) Predicate

1: return
(

2: ∀ê ∈ {1, . . . , T.e} : . For each event

3:
if T.opr[ê] ∈ {‘Get-state’, ‘Set-state’, ‘Set-output’} and

T.type[ê] = ‘X ’
.

If the operation means the ad-
versary controls the entity

4: then T.ent[ê] ∈ T.F . Then entity is in T .F)

The πF predicate allows the adversary three ‘fault’ operations, which allow a
variety of attack models; additional models can further limit the attack model.
Let us briefly explain the three fault operations and give some examples for their
use for different attack models:

‘Get-state’: return the state of the entity, including any secret/private keys. If
we add a model only ‘Get-state’ faults, we get the classical honest-but-curious
adversary model.

‘Set-output’: force specific output from the entity. This can allow, in particu-
lar, the classical byzantine fault model, where the attacker controls all outputs
from the entity.

‘Set-state’: set a specific state for the entity. If we add a model allowing only
‘Set-state’ faults and only upon the very beginning of the execution, we
obtain the self-stabilization model.

To enforce the model predicate, the predicate simply ensures that the ‘Get-
state’, ‘Set-state’, and ‘Set-output’ operations are applied only to entities in
T.F.

D.1.2 Threshold Security model M|F|≤f : up to f Faults

Next, we define the threshold security fault model, which allows up to some
threshold number of the entities to be faulty, i.e., controlled by the adversary.
We refer to this particular faults model as M|F|≤f , where f : N → N bounds
the number of faulty entities as a function of the total number of entities |N|.
The base function for this model is 0, i.e., we do not allow any probability for
more than f faults. Namely,M|F|≤f = (π|F|≤f , 0), where we define the threshold
security predicate π|F|≤f in Algorithm 27. The π|F|≤f predicate ensures that
the set of faulty entities T.F does not exceeds the function f and uses the πF

predicate, to ensure that all faulty entities are indeed part of the T .F set.

61

Algorithm 27 π|F|≤f (T , params) Predicate

1: return
(

2: (|T.F| ≤ f (|T.N|)) . Max size of T .F is not exceeded

3: and πF(T, params) .
And all faulty entities are iden-
tified)

D.1.3 MAuthCom
∆com

: authentic-sender, bounded-delay communication

We next present MAuthCom
∆com

, an authentic-sender, bounded-delay communica-

tion model. As with many models, the base-function is zero, i.e., MAuthCom
∆com

=

(πAuthCom
∆com

, 0). It is convenient to define πAuthCom
∆com

as a conjunction of two simpler

predicates: πAuthCom-rcv
∆com

, ensuring authentic-sender for message-receive events,

and πCom
∆com

, ensuring reliable, bounded-delay for message-send events. Namely:

πAuthCom
∆com (T, params) = πAuthCom-rcv

∆com (T, params) ∧ πCom
∆com(T, params) (22)

Note that these two predicates can also be used to define corresponding models:
MAuthCom-rcv

∆com
= (πAuthCom-rcv

∆com
, 0) andMCom

∆com
= (πCom

∆com
, 0), for cases where only

one of the two assumptions is required.
We first present πAuthCom-rcv

∆com
, which ensures authentic-sender for message-

receive events. The adversary decides on the function opr[êR] to be invoked at
every event êR as well as the input inp[êR]. We assume a convention for send and
receive events as follows. The adversary causes a message receipt event by setting
opr[êR] to ‘Receive’ and inp[êR] to (m, iS) (where m is the message and iS ∈ N is
the purported sender). We use dot notation to refer to the message (inp[êR].m)
and to the sender (inp[êR].iS). Also, we allow the sender ent[êS] to specify, as part
of its output out[êS], one or more triplets of the form (‘send’,m, iR), indicating
the sending of message m to iR ∈ N.

The authentic-sender property (πAuthCom-rcv
∆com

model predicate) implies that
inp[êR].iS indeed sent this message to ent[êR], during some previous event êS <
êR. The πAuthCom-rcv

∆com
model predicate is shown in Algorithm 28.

Algorithm 28 πAuthCom-rcv
∆com

(T , params) Predicate

1: return
(

2: ∀êR ∈ {1, . . . , T.e}:

3: if T.opr[êR] = ‘Receive’: . For each message-receive event

4: and T.ent[êR], T.inp[êR].iS ∈ T.N− T.F . If both receiver and purported
sender are honest

5: then ∃êS ∈ {1, . . . , êR − 1} . Then there is a previous event

6: s.t. (‘send’, T.inp[êR].m, T.ent[êR]) ∈ T.out[êS] .
In which an entity sent the mes-
sage to the receiver

7: and T.ent[êS] = T.inp[êR].iS .
And that entity was the pur-
ported sender)

62

The πCom
∆com

model predicate ensures reliable, bounded-delay delivery of mes-
sages sent. Assume that at event êS of the execution, the output out[êS] gen-
erated by ent[êS], includes a (‘send’,m, j) triplet, i.e., ent[êS] sends message m
to j ∈ N. If the MCom

∆com
model predicate is true for this execution, then after

at most ∆com, if the execution did not terminate already, then entity j would
receive m from ent[êS]. The πCom

∆com
model predicate is shown in Algorithm 29.

Algorithm 29 The πCom
∆com

(T , params) Model

1: return
(

2: ∀êS ∈ {1, . . . , T.e− 1}:

3: if (∃(‘send’,m, iR) ∈ T.out[êS] . If the output includes a send triple

4: and T.τ [T.e] ≥ T.τ [êS] +∆com .
And execution did not terminate yet af-
ter ∆com real time

5: and T.ent[êS] ∈ T.N− T.F) . And the entity is honest

6: then ∃êR ∈ {êS + 1, . . . , T.e} . Then there is a later event

7: s.t. T.τ [êS] +∆com ≥ T.τ [êR] . Within ∆com real time

8: and T.ent[êR] = iR .
Where the entity is the intended recipi-
ent in the send triplet

9: and T.opr[êR] = ‘Receive’ . And which is a receive event

10: and T.inp[êR] = (m,T.ent[êS]) .
And in which the entity receives the
message from the sender)

We remark that: πAuthCom
∆com

only applies when both sender and recipient are

honest (i.e., in N − F); πAuthCom
∆com

only ensures delivery, sender authentication
and bounded delay. This still allows receipt of duplicate messages, which may
involve unbounded delay. To simplify πCom

∆com
, we use the adversary-controlled

τ [·] values (line 6 of Algorithm 1). For this to be meaningful, we depend on the
synchronization properties of the MDrift

∆clk
model, discussed in Sec. 3.3.

D.1.4 The ∆-precise Wakeup Model MWake-up
∆clk

We next present the MWake-up
∆clk

model; again, the base-function is zero, i.e.,

MWake-up
∆clk

= (πWake-up
∆clk

, 0). We refer to MWake-up
∆clk

as the ∆-precise Wakeup
Model.

πWake-up
∆clk

provides a ‘wake-up service’ allowing the protocol to perform time-
driven activities and ensuring that appropriate functions are invoked properly.
This is ensured by requiring that if (‘Sleep’, x) was part of the output out[ê]
(indicating that entity ent[ê] was ‘put to sleep’ for x time) and execution did
not terminate by ’real’ time τ [ê] + x + ∆clk, then at some event ê′ > ê (where
τ [ê′] was within ∆clk from τ [ê] +x), the same entity (ent[ê]) was indeed ‘Woken

up’. The πWake-up
∆clk

predicate appears in Algorithm 30.

63

Algorithm 30 πWake-up
∆clk

(T , params) Predicate

1: return
(

2: ∀ê ∈ {1, . . . , T.e}: . For each event ê

3: if
(

(‘Sleep’, x) ∈ T.out[ê] . If the output includes a (‘Sleep’, x) tuple

4: and T.τ [T.e] ≥ T.τ [ê]+x+∆clk
)

.
And execution did not terminate yet af-
ter x+∆clk real time

5: then ∃ê′ ∈ {ê + 1, . . . , T.e} . Then there is a later event

6: s.t. |T.τ [ê′]−T.τ [ê]− x| ≤ ∆clk .
With real time x greater than at ê
(within ∆clk)

7: and T.ent[ê′] = T.ent[ê] . In which the entity is the same as in ê

8: and T.opr[ê′] = ‘Wake-up’ . And the operation is ‘Wake-up’)

D.1.5 Secure shared-keys Initialization (MSecKeyShareInit) Model

Sometimes, especially when analyzing shared-key protocols, it may be useful to
assume that the entities securely share keys before communicating with each
other - i.e., to assume that the keys are correctly shared without the interference
of the adversary. For this purpose, we define the model MSecKeyShareInit, shown
in Algorithm 31, which ensures that values (keys) are securely shared (using
the sec-out mechanism in the execution process) before entities send or receive
messages. Specifically, before any ‘Send’ or ‘Receive’ event, the sender of the
message must have securely shared values with the receiver, and the receiver
of the message must have securely shared values with the sender. We assume
that the operation ‘Sec-channel-setup’ is used to share these values. Note that
this model should be assumed together with the MExclude

P[‘Sec-in’] model defined in
Sec. C.2.1 to prevent the adversary from directly using the ‘Sec-in’ operation of
the protocol (i.e., without using an X -operation).

A similar model for secure (authenticated) initialization of public keys is
defined in [25].

D.2 Requirement Predicates

D.2.1 The Verified Attribution Generic Requirement RVAS
The output of many protocols may include attributable statements. An attributable
statement is a tuple (m,σ, i), where m is a string to which we refer as a state-
ment, i ∈ N is the purported origin of the statement, and σ provides evidence
(typically, a signature), allowing attribution of statement m to entity i. We next
explain the validation process, which uses the evidence σ to establish if i has, in
fact, originated m.

We focus on the typical case, where attribution is based on the use of a
digital signature scheme S, applied by the protocol P. Namely, σ is the result of
applying the signing algorithm S.Sign to the message m, using some (private)

64

Algorithm 31 πSecKeyShare(T , params) Predicate

1: return > if
(

2: ∀ê′′ ∈ {1, . . . , T.e} s.t. T.opr[ê′′] = ‘Send’ or T.opr[ê′′] = ‘Receive’:

.
For each message ‘Send’ event
and each message ‘Receive’
event

3: if T.opr[ê′′] = ‘Send’ .
Determine the sender and re-
ceiver of the message

then iS, iR ← T.ent[ê′′], T.inp[ê′′].iR

else if T.opr[ê′′] = ‘Receive’

then iS, iR ← T.inp[ê′′].iS, T.ent[ê
′′]

4: ∃ ê, ê′

s.t. 1 ≤ ê < ê′ < ê′′ .
Previously (before the ‘Send’ or
‘Receive’ event)

5: and T.opr[ê] = ‘Sec-channel-setup’ . Keys were securely sent

and T.ent[ê] = iS . From the sender of the message

and T.sec-out[ê][iR] 6= ⊥ . To the receiver of the message

6: and T.opr[ê′] = ‘Sec-in’ . And they were securely received

and T.ent[ê′] = iR . By the receiver of the message

and T.inp[ê′] = ê

7: and ∃ ê, ê′

s.t. 1 ≤ ê < ê′ < ê′′ .
And also previously (before the
‘Send’ or ‘Receive’ event)

8: and T.opr[ê] = ‘Sec-channel-setup’ . Keys were securely sent

and T.ent[ê] = iR .
From the receiver of the mes-
sage

and T.sec-out[ê][iS] 6= ⊥ . To the sender of the message

9: and T.opr[ê′] = ‘Sec-in’ . And securely received

and T.ent[ê′] = iS . By the sender of the message

and T.inp[ê′] = ê)

65

signing key sk belonging to the origin i. Therefore, we say that the attributable
statement (m,σ, i) is valid, i.e., that σ really ‘proves’ that i is the origin of m, if
S.Ver(pk,m, σ) = >, where pk is the public signature-verification key of i, i.e.,
the public key that validates signatures computed using sk. This attributes the
message m to the ‘owner’ of the public key pk (and the corresponding signing
key sk). To attribute m to i, it remains to establish the association between i
and the public key pk, i.e., to attribute pk, and messages verified by it, to i. We
focus on protocols where this association is known and secure (‘off-band’), e.g.,
CA public keys in PKI schemes.

We formalize this by assuming that each entity i ∈ N identifies its public key
pk by outputting the pair (‘public key’, pk) ∈ out[ê], in some event ê; namely, we
use ‘public key’ as a ‘label’, to identify output of the public key. Typically, entities
output the public key when they generate the key, i.e., ent[ê] = i, possibly as an
initialization operation, i.e. opr[ê] = ‘Init’. Notice that entities may often also
send their public keys to each other using the (‘send’,m, iR) output convention
described in § D.1.3; however, we prefer to keep the two conventions separate,
since we believe that not every protocol that uses verification of attribution
would necessarily send public keys in precisely the same way.

More precisely, the following Key Attribution Predicate Vka outputs > if
entity i has identified pk as its public key in a given transcript T output by an
execution of the protocol P (Algorithm 1):

Vka(i, pk, T) = {∃ê s.t. T.ent[ê] = i ∧ (‘public key’, pk) ∈ T.out[ê]} (23)

We now define the Verified Attribution of Statements Requirement RVAS ;
the base-function is zero, i.e., RVAS = (πVAS, 0). The adversary A ‘wins’ in
the experiment if its output outA includes both a valid attributable statement
(m,σ, i) for non-faulty entity i ∈ N−F and a verification key pk associated with
i, yet i did not originate m. To allow us to identify events ê in which an entity
i = ent[ê] intentionally signed message m, we adopt the following convention:
whenever signing a message m, the party adds the pair (‘signed’,m) as part of
its output, i.e., (‘signed’,m) ∈ out[ê]. Since this is always done, whenever the
protocol signs a message, we will not explicitly include the (‘signed’,m) pairs as
part of the output, which would make the pseudo-code cumbersome. Note that
often the entity will also send the signed message, however, different protocols
may send in different ways, hence this convention makes it easier to define the
requirement predicate.

The requirement predicate πVAS is defined with respect to specific signature
scheme S, and the Vka predicate defined above (Eq. 23). For simplicity, and since
S is typically obvious (as part of P), we do not explicitly specify S as a parameter
of the requirement predicate. The πVAS predicate is shown in Algorithm 32.

66

Algorithm 32 Verifiable Attribution of Statements Predicate πVAS(T, params)

1: (m,σ, i, pk)← T.outA

2: return ¬
(

3: i ∈ T.N− T.F . i is an honest entity

4: and S.Ver(pk,m, σ) = > . m was signed by the owner of pk

5: and Vka(i, pk, T) = > . i identified pk as its public key

6: and @ê s.t.: T.ent[ê] = i

and (‘signed’,m) ∈ T.out[ê] .
Yet, i never indicated that it
signed m)

D.2.2 The No False Positives Generic Requirement

Many security protocols are required to be resilient to misbehaviors, i.e., to
achieve their goals even if some of the entities, say entities in F ⊂ N, are faulty,
and may misbehave (arbitrarily or in some specified manner). This resiliency to
faulty, misbehaving entities is often based on detection of misbehavior; further-
more, often, many security protocols are required only to detect misbehaviors,
which would be followed by taking some additional measures to deter and/or
neutralize an attack.

While misbehavior can be detected in different ways, detection is typically
based either on some evidence that a certain entity is dishonest, where the evi-
dence should be verifiable by any third party, or based on an accusation, where
one entity (the accuser) accuses another entity (the suspect) of some misbehav-
ior. Such an accusation may not be true, and therefore, it is harder to use this
approach to deter and/or neutralize the attack; however, many misbehaviors do
not leave any evidence verifiable by a third party, in which case, accusations may
provide some security benefits, e.g., detection of the attack. A typical example
of such misbehavior that does not leave any evidence is when a party fails to
act in a required way, e.g., to send a required message or response; such failure
may be plausibly blamed on communication issues, or on failure of the intended
recipient. Often, a party, say Alice, detects such failure, say of Mal, to send a
required message, after Alice waits for some maximum delay, and then Alice is-
sues an ‘accusation’ against Mal, to alert others; for example, see [26]. An honest
entity would only accuse a misbehaving party; however, because an accusation
cannot be verified, a misbehaving entity could falsely accuse anyone, even an
honest entity.

To formalize these concepts, we define two requirement predicates: one to
ensure that honest entities cannot be ‘framed’ as misbehaving, i.e., evidences
are always verifiable with correct outcome, and another one to express that
honest entities never accuse other honest entities, i.e., only accuse misbehaving
entities. We also define a third requirement predicate, no false positives, which
is simply the conjunction of the other two; we omit the simple definition of
this combined requirement. In the rest of this subsection, we present the non-

67

frameability requirement (and predicate); and in the next subsection, we present
the no false accusations requirement (and predicate).

The Non-frameability requirement and Proof of Misbehavior. The first secu-
rity requirement is called non-frameability (of honest entities), and ensures that
a specific protocol would not allow any entity to produce a valid Proof of Mis-
behavior of a non-faulty entity. The requirement predicate is therefore defined
with respect to a given Proof of Misbehavior Validation Predicate VPoM , which
receives two inputs: a Proof-Validation Key pk and a purported-proof ζ. The
output of VPoM (pk, ζ) is > if and only if ζ is a valid Proof of Misbehavior, as
indicated by pk; i.e., a misbehavior by an entity who knows the corresponding
private key, typically, the ‘owner’ of pk, which can be validated using the Key
Attribution Predicate Vka. The natural way is to define the Proof of Misbehavior
Validation Predicate VPoM to be protocol specific, as the notions of misbehavior,
and valid proof of misbehavior, depend on the specific protocol specifications.
We specify for P a special stateless operation opr =‘VPoM ’, which does not mod-
ify the state or depend on it, or on the local clock. Abusing notation, we denote
this operation simply as P.VPoM (pk, ζ). The use of a protocol-defined P.VPoM
allows us to define, below, the Non-frameability requirement predicate.

Let VPoM : {0, 1}∗ × {0, 1}∗ → {>,⊥} be a predicate. The Non-frameability
requirement is defined as RNF = (πNF, 0). The Non-frameability predicate πNF,
shown in Algorithm 33, returns ⊥ if the adversary was able to output a Proof
of Misbehavior for an honest entity, and > otherwise.

Algorithm 33 Non-frameability Predicate πNF(T, params)

1: (i, ζ, pk)← T.outA

2: return ¬
(

3: Vka(i, pk, T) . i identified pk as its public key

4: and P.VPoM (pk, ζ) .
ζ is a valid Proof of Misbehavior by the
owner of pk

5: and i ∈ T.N− T.F . i is an honest entity)

D.2.3 Accusations and the No False Accusations Requirement

Recall that in the execution process, the adversary can use the ‘Set-output’,
‘Set-state’, and ‘Get-state’ operations to set the output and the state of a party
and to learn the state of a party; we refer to such party as faulty, and denote
by F the set of faulty parties in an execution. In many protocols, one party, say
Alice, may detect that another party, say Mal, is faulty, typically, by receiving
an invalid message from Mal - or simply by not receiving a message expected
from Mal by a specific ‘deadline’ (for bounded-delay communication models).

68

Intuitively, the No False Accusations (NFA) requirement predicate πNFA states
that a non-faulty entity a 6∈ F (Alice), would never (falsely) accuse of a fault
another non-faulty entity b 6∈ F (Bob). The No False Accusations requirement is
defined as RNFA = (πNFA, 0). To properly define the requirement predicate πNFA,
we first define a convention for one party, say a ∈ N (for ‘Alice’), to output an
Indicator of Accusation, i.e., ‘accuse’ another party, say iM ∈ N (for ‘Mal’), of a
fault. Specifically, we say that at event êA of the the execution, entity ent[êA]
accuses entity iM (Mal), if out[êA] is a triplet of the form (IA, iM, x). The last
value in this triplet, x, should contain the clock value at the first time that Al-
ice accused Mal; we discuss this after the requirement predicate, as the value
x is not relevant for the requirement predicate and is just used as a convenient
convention for some protocols.

The No False Accusations (NFA) predicate πNFA checks whether the adver-
sary was able to cause one honest entity, say Alice, to accuse another honest
entity, say Bob (i.e., both Alice and Bob are in N−F). Namely, πNFA(T, params)
returns ⊥ only if T.out[T.e] = (IA, j, x), for some j ∈ T.N, and both j and
T.ent[T.e] are honest (i.e., j, T.ent[T.e] ∈ T.N − T.F). See Algorithm 34. Note
that we only need to consider the last event (i.e., event T.e), because if there is
an adversary which can cause a false accusation in an earlier event, then there
must be an adversary which can cause a false accusation in the last event, since
the adversary can decide when to end the execution.

Algorithm 34 No False Accusations Predicate πNFA(T, params)

1: return ¬
(

2: T.ent[T.e] ∈ T.N− T.F . T.ent[T.e] is an honest entity

3: and ∃j ∈ T.N− T.F, x s.t. (IA, j, x) ∈ T.out[T.e] . T.ent[T.e] accused an honest entity)

As noted above, in an accusation, the output out[êA] contains a triplet of the
form (IA, iM, x), where x is a clock value and should be the clock value at the
first time that Alice accused Mal. We found this convenient in the definition of
protocol-specific requirements where a party may accuse another party multiple
times, and the requirement is related to the time of the first accuse event. To
allow the use of this convention, we define the following ‘technical’ requirement
predicate which merely confirms that honest entities always indicate, in any
accuse event, the time of the first time they accused the same entity.

To simplify the predicate, let fc(i, iM, T) be the value of T.clk[ê], where ê
is the first event in T in which entity i accused entity iM ∈ T.N (or ⊥ if no such
event exists). The Use First-Accuse Time (UFAT) predicate πUFAT is defined in
Algorithm 35.

69

Algorithm 35 Use First-Accuse Time Predicate πUFAT(T, params)

1: return ¬
(

2: T.ent[T.e] ∈ T.N− T.F . T.ent[T.e] is an honest entity

3:
and ∃iM ∈ T.N s.t. (IA, iM, x) ∈ T.out[T.e]

and x 6= fc(T.ent[T.e], iM, T)
.
T.ent[T.e] did not indicate the first time
of accusation in an accusation)

E Proofs of the Asymptotic Security Modularity Lemmas

In this section, we show proofs of the asymptotic security modularity lemmas
presented in Sec. 5.

E.1 Proofs of the Asymptotic Security Modularity Lemmas

Lemma 1 (Model monotonicity lemma (asymptotic security)).

For any set X of execution process operations, for any modelsM and M̂ such
that M⊆ M̂, if an adversary A poly-satisfies M̂ using X , then A poly-satisfies
M using X , namely:

A |=X
poly
M̂ ⇒ A |=X

poly
M (5)

Proof. Using Def. 2, the left side means that:

(∀ P ∈ PPT, params ∈ {0, 1}∗, (π, β) ∈ M̂) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

Since M⊆ M̂:

⇒ (∀ P ∈ PPT, params ∈ {0, 1}∗, (π, β) ∈M) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

Which is the definition of A |=X
poly
M, according to Def. 2.

Lemma 2 (Models union lemma (asymptotic security)).
For any set X of execution process operations and any two models M,M′,

if an adversary A poly-satisfies both M and M′ using X , then A poly-satisfies
the ‘stronger’ model M̂ ≡M∪M′ using X , namely:(

A |=X
poly
M∧A |=X

poly
M′
)
⇒ A |=X

poly
M̂ (6)

Proof. By Def. 2, the left side means that:

(∀ P ∈ PPT, params ∈ {0, 1}∗, (π, β) ∈M) :

επA,P,X (params) ≤ β(params) +Negl(|params|)
∧ (∀ P ∈ PPT, params ∈ {0, 1}∗, (π, β) ∈M′) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

70

Since M̂ =M∪M′, we have:

⇒ (∀ P ∈ PPT, params ∈ {0, 1}∗, (π, β) ∈ M̂) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

Which is the definition of A |=X
poly
M̂, according to Def. 2.

Lemma 3 (Requirement-model monotonicity lemma (asymptotic se-
curity)).

For any models M and M̂ such that M ⊆ M̂, if a protocol P poly-satisfies
requirement R under M using the execution process operations set X , then P
poly-satisfies R under M̂ using X , namely:

P |=M,X
poly

R ⇒ P |=M̂,X
poly

R (7)

Proof. By Def. 3, the left side means that:

(∀ A ∈ PPT s.t. A |=X
poly
M, params ∈ {0, 1}∗, (π, β) ∈ R) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

Since M is weaker than M̂, then by Lemma 1:

A |=X
poly
M̂ ⇒ A |=X

poly
M

Therefore, we have:

⇒ (∀ A ∈ PPT s.t. A |=X
poly
M̂, params ∈ {0, 1}∗, (π, β) ∈ R) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

Which is the definition of P |=̂M,X
poly

R, according to Def. 3.

Lemma 4 (Requirement monotonicity lemma (asymptotic security)).
For any set X of execution process operations, any modelM, and any require-

ments R and R̂ such that R ⊆ R̂, if a protocol P poly-satisfies the (stronger)

requirement R̂ under M using X , then P poly-satisfies R under M using X ,
namely:

P |=M,X
poly

R̂ ⇒ P |=M,X
poly

R (8)

Proof. Using Def. 3, the left side means that:

(∀ A ∈ PPT s.t. A |=X
poly
M, params ∈ {0, 1}∗, (π, β) ∈ R̂) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

Since R ⊆ R̂:

⇒ (∀ A ∈ PPT s.t. A |=X
poly
M, params ∈ {0, 1}∗, (π, β) ∈ R) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

Which is the definition of P |=M,X
poly

R, according to Def. 3.

71

Lemma 5 (Requirements union lemma (asymptotic security)).
For any set X of execution process operations, any models M and M′, and

any two requirements R and R′, if a protocol P poly-satisfies R under M using
X and poly-satisfies R′ under M′ using X , then P poly-satisfies the ‘combined’
(stronger) requirement R̂ ≡ R∪R′ under model M̂ ≡M∪M′ using X , namely:(

P |=M,X
poly

R∧ P |=M
′,X

poly
R′
)
⇒ P |=M̂,X

poly
R̂ (9)

Proof. Since M̂ is stronger than M and stronger than M′, then by Lemma 3:(
P |=M,X

poly
R∧ P |=M

′,X
poly

R′
)
⇒
(
P |=̂M,X

poly
R∧ P |=̂M,X

poly
R′
)

Using Def. 3, this means that:

(∀ A ∈ PPT s.t. A |=X
poly
M̂, params ∈ {0, 1}∗, (π, β) ∈ R) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

∧ (∀ A ∈ PPT s.t. A |=X
poly
M̂, params ∈ {0, 1}∗, (π, β) ∈ R′) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

Since R̂ = R∪R′, we have:

⇒ (∀ A ∈ PPT s.t. A |=X
poly
M̂, params ∈ {0, 1}∗, (π, β) ∈ R̂) :

επA,P,X (params) ≤ β(params) +Negl(|params|)

Which is the definition of P |=̂M,X
poly

R̂, according to Def. 3.

F Concrete Security Modularity Lemmas

In Sec. 5, we presented the asymptotic security modularity lemmas. We now
show the corresponding concrete security modularity lemmas (in Sec. F.1 and
F.2) and their proofs (in Sec. F.3), which use the concrete security definitions
from Sec. 7.2.

F.1 Concrete Security Model Modularity Lemmas

The model modularity lemmas give the relationships between stronger and weaker
models. They allow us to shrink stronger models (assumptions) into weaker ones
and to expand weaker models (assumptions) into stronger ones as needed - and
as intuitively expected to be possible.

The first lemma is the Model Monotonicity Lemma (concrete security). It

shows that if an adversary A satisfies a stronger model M̂, then A also satisfies
any model that is weaker than M̂.

72

Lemma 8 (Model Monotonicity Lemma (concrete security)).

For any set X of execution process operations, for any modelsM and M̂ such
that M ⊆ M̂, if an adversary A CS-satisfies M̂ using X , then A CS-satisfies
M using X , namely:

A |=X
CS
M̂ ⇒ A |=X

CS
M (24)

We next show the Models Union Lemma (concrete security), which shows
that if an adversary satisfies two models M and M′, then A also satisfies the
stronger model that is obtained by taking the union of M and M′.

Lemma 9 (Models Union Lemma (concrete security)).
For any set X of execution process operations and any two models M,M′,

if an adversary A CS-satisfies both M and M′ using X , then A CS-satisfies the
‘stronger’ model M̂ ≡M∪M′ using X , namely:(

A |=X
CS
M∧A |=X

CS
M′
)
⇒ A |=X

CS
M̂ (25)

We next show the Requirement-Model Monotonicity Lemma (concrete se-
curity), which shows that if a protocol satisfies a requirement under a weaker
model, then it satisfies the same requirement under a stronger model (using the
same operations set X). This is true, because if we are assuming everything that
is included in the stronger model, then we are assuming everything in the weaker
model (by Lemma 8), which implies that the protocol satisfies the requirement
for such adversaries.

Lemma 10 (Requirement-Model Monotonicity Lemma (concrete se-
curity)).

For any models M and M̂ such that M ⊆ M̂, if a protocol P CS-satisfies
requirement R under M using the execution process operations set X , then P
CS-satisfies R under M̂ using X , namely:

P |=M,X
CS

R ⇒ P |=M̂,X
CS

R (26)

F.2 Concrete Security Requirement Modularity Lemmas

The requirement modularity lemmas prove relationships between stronger and
weaker requirements, assuming the same model M and operations set X . They
allow us to infer that a protocol satisfies a particular weaker requirement given
that it satisfies a stronger one, or that a protocol satisfies a particular stronger
requirement given that it satisfies its (weaker) ‘sub-requirements’.

The Requirement Monotonicity Lemma (concrete security) shows that if a

protocol satisfies a stronger requirement R̂, then it satisfies any requirement
that is weaker than R̂ (under the same modelM and using the same operations
set X).

73

Lemma 11 (Requirement Monotonicity Lemma (concrete security)).
For any set X of execution process operations, any model M, and any re-

quirements R and R̂ such that R ⊆ R̂, if a protocol P CS-satisfies the (stronger)

requirement R̂ under M using X , then P CS-satisfies R under M using X ,
namely:

P |=M,X
CS

R̂ ⇒ P |=M,X
CS

R (27)

Finally, the Requirements Union Lemma (concrete security) shows that if
a protocol satisfies two requirements R and R′, then it satisfies the stronger
requirement that is obtained by taking the union of R and R′ (under the same
model M and operations set X).

Lemma 12 (Requirements Union Lemma (concrete security)).
For any set X of execution process operations, any models M and M′, and

any two requirements R and R′, if a protocol P CS-satisfies R under M using
X and CS-satisfies R′ under M′ using X , then P CS-satisfies the ‘combined’
(stronger) requirement R̂ ≡ R∪R′ under model M̂ ≡M∪M′ using X , namely:(

P |=M,X
CS

R∧ P |=M
′,X

CS
R′
)
⇒ P |=M̂,X

CS
R̂ (28)

F.3 Proofs of the Concrete Security Modularity Lemmas

Lemma 8 (Model Monotonicity Lemma (concrete security)).

For any set X of execution process operations, for any modelsM and M̂ such
that M ⊆ M̂, if an adversary A CS-satisfies M̂ using X , then A CS-satisfies
M using X , namely:

A |=X
CS
M̂ ⇒ A |=X

CS
M (24)

Proof. Using Def. 4, the left side means that:(
∀ P, params ∈ {0, 1}∗, (π, β) ∈ M̂ ∪MCS

)
:

επCS(A),P,X (params) ≤ β(params)

Since M⊆ M̂:

⇒
(
∀ P, params ∈ {0, 1}∗, (π, β) ∈M∪MCS

)
:

επCS(A),P,X (params) ≤ β(params)

Which is the definition of A |=X
CS
M, according to Def. 4.

Lemma 9 (Models Union Lemma (concrete security)).
For any set X of execution process operations and any two models M,M′,

if an adversary A CS-satisfies both M and M′ using X , then A CS-satisfies the
‘stronger’ model M̂ ≡M∪M′ using X , namely:(

A |=X
CS
M∧A |=X

CS
M′
)
⇒ A |=X

CS
M̂ (25)

74

Proof. By Def. 4, the left side means that:(
∀ P, params ∈ {0, 1}∗, (π, β) ∈M∪MCS

)
:

επCS(A),P,X (params) ≤ β(params)

∧
(
∀ P, params ∈ {0, 1}∗, (π, β) ∈M′ ∪MCS

)
:

επCS(A),P,X (params) ≤ β(params)

Since M̂ =M∪M′, we have:

⇒
(
∀ P, params ∈ {0, 1}∗, (π, β) ∈ M̂ ∪MCS

)
:

επCS(A),P,X (params) ≤ β(params)

Which is the definition of A |=X
CS
M̂, according to Def. 4.

Lemma 10 (Requirement-Model Monotonicity Lemma (concrete se-
curity)).

For any models M and M̂ such that M ⊆ M̂, if a protocol P CS-satisfies
requirement R under M using the execution process operations set X , then P
CS-satisfies R under M̂ using X , namely:

P |=M,X
CS

R ⇒ P |=M̂,X
CS

R (26)

Proof. By Def. 5, the left side means that:

(∀ A s.t. A |=X
CS
M, params ∈ {0, 1}∗, (π, β) ∈ R) :

επCS(A),P,X (params) ≤ β(params)

Since M is weaker than M̂, then by Lemma 8:

A |=X
CS
M̂ ⇒ A |=X

CS
M

Therefore, we have:

⇒ (∀ A s.t. A |=X
CS
M̂, params ∈ {0, 1}∗, (π, β) ∈ R) :

επCS(A),P,X (params) ≤ β(params)

Which is the definition of P |=̂M,X
CS

R, according to Def. 5.

Lemma 11 (Requirement Monotonicity Lemma (concrete security)).
For any set X of execution process operations, any model M, and any re-

quirements R and R̂ such that R ⊆ R̂, if a protocol P CS-satisfies the (stronger)

requirement R̂ under M using X , then P CS-satisfies R under M using X ,
namely:

P |=M,X
CS

R̂ ⇒ P |=M,X
CS

R (27)

75

Proof. Using Def. 5, the left side means that:

(∀ A s.t. A |=X
CS
M, params ∈ {0, 1}∗, (π, β) ∈ R̂) :

επCS(A),P,X (params) ≤ β(params)

Since R ⊆ R̂:

⇒ (∀ A s.t. A |=X
CS
M, params ∈ {0, 1}∗, (π, β) ∈ R) :

επCS(A),P,X (params) ≤ β(params)

Which is the definition of P |=M,X
CS

R, according to Def. 5.

Lemma 12 (Requirements Union Lemma (concrete security)).
For any set X of execution process operations, any models M and M′, and

any two requirements R and R′, if a protocol P CS-satisfies R under M using
X and CS-satisfies R′ under M′ using X , then P CS-satisfies the ‘combined’
(stronger) requirement R̂ ≡ R∪R′ under model M̂ ≡M∪M′ using X , namely:(

P |=M,X
CS

R∧ P |=M
′,X

CS
R′
)
⇒ P |=M̂,X

CS
R̂ (28)

Proof. Since M̂ is stronger than M and stronger than M′, then by Lemma 10:(
P |=M,X

CS
R∧ P |=M

′,X
CS

R′
)
⇒
(
P |=̂M,X

CS
R∧ P |=̂M,X

CS
R′
)

Using Def. 5, this means that:

(∀ A s.t. A |=X
CS
M̂, params ∈ {0, 1}∗, (π, β) ∈ R) :

επCS(A),P,X (params) ≤ β(params)

∧ (∀ A s.t. A |=X
CS
M̂, params ∈ {0, 1}∗, (π, β) ∈ R′) :

επCS(A),P,X (params) ≤ β(params)

Since R̂ = R∪R′, we have:

⇒ (∀ A s.t. A |=X
CS
M̂, params ∈ {0, 1}∗, (π, β) ∈ R̂) :

επCS(A),P,X (params) ≤ β(params)

Which is the definition of P |=̂M,X
CS

R̂, according to Def. 5.

76

	MoSS: Modular Security Specifications Framework

