MoSS:
Modular Security Specifications Framework

Amir Herzberg!, Hemi Leibowitz?, Ewa Syta?, and Sara Wrétniak!

! Dept. of Computer Science and Engineering, University of Connecticut, Storrs, CT
2 Dept. of Computer Science, Bar-Ilan University, Ramat Gan, Israel
3 Dept. of Computer Science, Trinity College, Hartford, CT

Abstract. Applied cryptographic protocols have to meet a rich set of
security requirements under diverse environments and against diverse
adversaries. However, currently used security specifications, based on ei-
ther simulation [11,28] (e.g., ‘ideal functionality’ in UC) or games [8,30],
are monolithic, combining together different aspects of protocol require-
ments, environment and assumptions. Such security specifications are
complex, error-prone, and foil reusability, modular analysis and incre-
mental design.

We present the Modular Security Specifications (MoSS) framework, which
cleanly separates the security requirements (goals) which a protocol should
achieve, from the models (assumptions) under which each requirement
should be ensured. This modularity allows us to reuse individual models
and requirements across different protocols and tasks, and to compare
protocols for the same task, either under different assumptions or sat-
isfying different sets of requirements. MoSS is flexible and extendable,
e.g., it can support both asymptotic and concrete definitions for security.
So far, we confirmed the applicability of MoSS to two applications: secure
broadcast protocols and PKI schemes.

1 Introduction

Precise and correct models, requirements and proofs are the best way to ensure
security. Unfortunately, it is hard to write them, and easy-to-make subtle errors
often result in vulnerabilities and exploits; this happens even to the best cryp-
tographers, with the notable exception of the reader. Furthermore, ‘the devil
is in the details’; minor details of the models and requirements can be very
significant, and any inaccuracies or small changes may invalidate proofs.

This article is based on an earlier article: Herzberg A., Leibowitz H., Syta E.,
Wrétniak S. (2021) MoSS: Modular Security Specifications Framework. In: Malkin
T., Peikert C. (eds) Advances in Cryptology — CRYPTO 2021. CRYPTO 2021.
Lecture Notes in Computer Science, vol 12827. Springer, Cham., (©QIACR 2021
https://doi.org/10.1007/978-3-030-84252-9_2.


https://doi.org/10.1007/978-3-030-84252-9_2

Provable security has its roots in the seminal works rigorously proving secu-
rity for constructions of cryptographic primitives, such as signature schemes [18],
encryption schemes [17] and pseudorandom functions [16]. Provable security un-
der well-defined assumptions is expected from any work presenting a new design
or a new cryptographic primitive. With time, the expectation of a provably-
secure design has also extended to applied cryptographic protocols, with semi-
nal works such as [4,7]. After repeated discoveries of serious vulnerabilities in
‘intuitively designed’ protocols [15], proofs of security are expected, necessary
and appreciated by practitioners. However, provable security is notoriously chal-
lenging and error-prone for applied cryptographic protocols, which often aim to
achieve complex goals under diverse assumptions intended to reflect real-world
deployment scenarios. In response, we present the MoSS framework.

MoSS: Modular Security Specifications. In MoSS, a security specifica-
tion includes a set of models (assumptions) and specific requirements (goals);
models and requirements are defined using predicates and probability functions.
By defining each model and requirement separately, we allow modularity, stan-
dardization and reuse. This modularity is particularly beneficial for applied pro-
tocols, due to their high number of requirements and models; see Figure 1.

Execution process Models (assumptions) Requirements (goals)

Adversary model (capabilities)
- MitM/Eavesdropper

Generic requirements
- Indistinguishability (§4.3.2)

(Private channels (§2.3) W

Confidentiality (§4.3.1)
- Flip
- Challenge

- Guess
(others)

CS Compiler (§7.1)

- Concrete security

- Polytime interactions

- Bounded (§D.1.3) / Fixed delay
- Reliable / Unreliable
- FIFO / Non-FIFO

(others)

Clocks Secure keys

- Bounded-drift (§3.3) initialization

- A-Wakeup (§D.1.4) - Shared (§D.1.5)
- Synchronized - Public [25]

- (others) (others)

- Sec-in - Byzantine/Honest-but-Curious/Fail-Stop - No false positive (§D.2.2)
m - Faulty (§D.1.1)/Threshold (§D.1.2) /proactivel ||_ Verifiable attribution (§D.2.1)

- Polytime interactions (§7.3) h
- Get-State (tiheres)

(others)
- Set-State PKI requirements [25]
- Set-Output Communication model = . e

- Revocation status accountability

(others) - Authenticated (§D.1.3) / Unauthenticated

- Accountability

- Transparency (§6.2)

- Revocation status transparency

- Non-equivocation prevention / detection
- Privacy

(others)

Broadcast requirements (§6.1)

- Authenticated broadcast (§C.3.1)
- Confidential broadcast,
(others)

Fig. 1: The MoSS framework allows security to be specified modularly, i.e., ‘a la carte’,
with respect to a set of individually-defined models (assumptions), requirements (prop-
erties/goals) and even operations of the execution process. Models, requirements and
operations defined in this paper or in [19,25] are marked accordingly. Many models,
and some (‘generic’) requirements, are applicable to different types of protocols.

MoSS also includes a well-defined ezecution process (Figure 2 and Algo-
rithm 1), as necessary for provable security. For simplicity, the ‘core’ execution



process is simple, and supports modular extensions, allowing support for some
specific features which are not always needed. Let us now discuss each of these
three components of MoSS in more detail.

Models are used to reflect different assumptions made for a protocol, such as
the adversary capabilities, communication (e.g., delays and reliability), synchro-
nization, initialization and more. For each ‘category’ of assumptions, there are
multiple options available: e.g., MitM or eavesdropper for the adversary model;
threshold for the corruption model; asynchronous, synchronous, or bounded de-
lay for the communication delays model; or asynchronous, synchronous, syn-
tonized, or bounded drift for the clock synchronization model. Often, a model
can be reused in many works, since, in MoSS, each model is defined indepen-
dently of other models and of requirements, as one or more pairs of a small
predicate (‘program’) and a probability function. This approach facilitates the
reuse of models and also makes it easier to write, read and compare differ-
ent works. For example, many protocols, for different tasks, use the same clock
and communication models, e.g., synchronous communication and clocks. At the
same time, protocols for the same task may use different models, e.g., bounded
delay communication and bounded drift clocks.

Requirements refer to properties or goals which a protocol aims for. Protocols
for the same problem may achieve different requirements, which may be com-
parable (e.g., equivocation detection vs. equivocation prevention) or not (e.g.,
accountability vs. transparency). While many requirements are task specific,
some generic requirements are applicable across different tasks; e.g., a no false
positive requirement to ensure that an honest entity should never be considered
‘malicious’ by another honest entity.

Ezecution process. MoSS has a well-defined execution process (see Figure 2
and Algorithm 1) which takes as input a protocol to execute, an adversary,
parameters and a set of execution operations. The execution operations allow
customized extensions of the execution process, i.e., they enhance the basic exe-
cution process with operations which may not always be required. We use these
additional operations to define specifications such as indistinguishability, shared-
key initialization and entity corruptions.

Related work. A significant amount of work in applied cryptography is
informally specified, with specifications presented as a textual list of assumptions
(models) and goals (requirements). Obviously, this informal approach does not
facilitate provable security. For provable security, there are two main approaches
for defining security specifications: simulation-based and game-based.

The simulation-based approach, most notably Universal Composability (UC)
[11,12], typically defines security as indistinguishability between executions of
the given protocol with the adversary, and executions of an ‘ideal functional-
ity’, which blends together the model and requirements, with a simulator. There
are multiple extensions and alternatives to UC, such as iUC, GNUC, IITM and
simplified-UC [10, 21, 23, 31], and other simulation-based frameworks such as
constructive cryptography (CC) [27,28] and reactive systems [1]. Each of these
variants defines a specific, fixed execution model. An important reason for the



Specifications Multiple |Prov.-secure
Approach
Exec Process | Models Requirements specifications| composition
Informal - List List Yes No
Game-based Game per goal; models are part of game Yes No
Simulation-based Fixed Indistinguishable from Ideal Functionality No Yes
MoSS Extensible List List Yes No

Table 1: A comparison of different approaches to security specifications. An exe-
cution process defines executions (runs). A protocol aims to satisfy certain require-
ments assuming certain models. Simulation-based specifications, such as UC [12], en-
sure provably-secure composition of protocols but do not allow one protocol to meet
multiple separately-defined specifications. Some tasks, e.g. zero-knowledge, may only
have simulation-based specifications.

popularity of the simulation-based approach is its support for secure composi-
tion of protocols; another reason is the fact that some important tasks, e.g.,
zero-knowledge (ZK), seem to require simulation-based definitions. However, for
many tasks, especially applied tasks, game-based definitions are more natural
and easier to work with.

The game-based approach [8,20,30] is also widely adopted, especially among
practitioners, due to its simpler, more intuitive definitions and proofs of security.
In this approach, each requirement is defined as a game between the adversary
and the protocol. The game incorporates the models, the execution process, and
the specific requirement (e.g., indistinguishability). However, the game-based
approach does have limitations, most notably, there is no composition theorem
for game-based specifications and it may be inapplicable to tasks such as zero-
knowledge proofs and multi-party computation.

Both ‘game-based’ and ‘simulation-based’ security specifications are mono-
lithic: an ideal functionality or a game, combining security requirements with
different aspects of the model and the execution process. Even though differ-
ent requirements and models are individually presented in their informal de-
scriptions, the designers and readers have to validate directly that the formal,
monolithic specifications correctly reflect the informal descriptions.

Such monolithic specifications are not a good fit for analysis of applied pro-
tocols, which have complex requirements and models, and it stands in sharp
contrast to the standard engineering approach, where specifications are gradu-
ally developed and carefully verified at each step, often using automated tools.
While there exist powerful tools to validate security of cryptographic proto-
cols [2], there are no such tools to validate the specifications.

We began this work after trying to write simulation-based as well as game-
based specifications for PKI schemes, which turned out to be impractical given
the complexity of realistic modeling aspects; this motivated us to develop mod-
ular security specifications, i.e., MoSS.

In Table 1, we compare MoSS to game-based and simulation-based security
specifications. The advantage of MoSS is its modularity; a security specification



consists of one or more models, one or more requirements and, optionally, some
execution process operations. Each model and requirement is defined indepen-
dently, as one or more pairs of a small predicate (which is, typically, a simple pro-
gram) and a probability function. Models are often applicable to different tasks,
and some requirements are generic and apply to multiple tasks. This modular ap-
proach allows to reuse models and requirements, which makes it easier to write,
understand and compare specifications. For example, in Appendix C, we present
a simplified instance of an authenticated-broadcast protocol assuming (well-
defined) bounded delay and bounded clock drift models.Appendix Dincludes
more models and requirements. The same models are used for PKI schemes
in [25].

The use of separate, focused models and requirements also allows a gradual
protocol development and analysis. To illustrate, we first analyze the authenticated-
broadcast protocol assuming only a secure shared-key initialization model, which
suffices to ensure authenticity but not freshness. We then show that the proto-
col also achieves freshness when we also assume bounded clock drift. Lastly, we
show that by additionally assuming bounded-delay communication, we can en-
sure a bounded delay for the broadcast protocol. This gradual approach makes
the analysis easier to perform and understand (and to identify any design flaws
early on), especially when compared to proving such properties using monolithic
security specifications (all at once). Using MoSS is a bit like playing Lego with
models and requirements!

Concrete security [5] is especially important for protocols used in practice as it
allows to more precisely define security of a given protocol and to properly select
security parameters, in contrast to asymptotic security. Due to its modularity,
MoSS also supports concrete security in a way we consider simple and even
elegant; see Section 7.2.

Ensuring polytime interactions. As pointed out in [11,22], the ‘classical’ no-
tion of PPT algorithms is not sufficient for analysis of interactive systems, where
the same protocol (and adversary) can be invoked many times. This issue is
addressed by later versions of UC and in some other recent frameworks, e.g.,
GNUC [21]. The extendability of MoSS allows it to handle these aspects rela-
tively simply; (see Section 7.3 and Appendix B).

Modularity lemmas. In Section 5, we present several asymptotic security mod-
ularity lemmas, which allow combining ‘simple’ models and requirements into
composite models and requirements, taking advantage of MoSS’s modularity.
We provide proofs and corresponding concrete security modularity lemmas in
Appendices E and F.

Limitations of MoSS. Currently, MoSS has two significant limitations:
the lack of computer-aided tools, available for both game-based and simulation-
based approaches [2,3,9,29], and the lack of composability, an important property
proven for most simulation-based frameworks, most notably UC [11].

We believe that MoSS is amenable to computer-aided tools. For example, a
tool may transform the modular MoSS security specifications into a monolithic
game or an ideal functionality, allowing to use the existing computer-aided tools.



However, development of such tools is clearly a challenge yet to be met. Another
open challenge is to prove a composability property directly for MoSS security
specifications, or to provide (MoSS-like) modular specifications for UC and other
simulation-based frameworks.

It is our hope that MoSS may help to bridge the gap between the theory
and practice in cryptography, and to facilitate meaningful, provable security for
practical cryptographic protocols and systems.

Real-world application of MoSS: PKI. Public Key Infrastructure (PKI)
schemes, a critical component of applied cryptography, amply illustrate the chal-
lenges of applying provable security in practice and serve as a good example of
how MoSS might benefit practical protocols. Current PKI systems are mostly
based on the X.509 standard [14], but there are many other proposals, most no-
tably, Certificate Transparency (CT) [24], which add significant goals and cryp-
tographic mechanisms. Realistic PKI systems have non-trivial requirements; in
particular, synchronization is highly relevant and needed to deal with even such
basic aspects as revocation.

Recently, we presented the first rigorous study [25] of practical* PKI schemes
by using MoSS. Specifically, we defined model and requirement predicates for
practical PKI schemes and proved security of the X.509 PKI scheme. The analy-
sis uses the bounded-delay and bounded-drift model predicates; similarly, follow-
up work is expected to reuse these models and requirement predicates to prove
security for additional PKI schemes, e.g., Certificate Transparency.

Organization. Section 2 introduces Exec, the adversary-driven execution
process. Section 3 and Section 4 present models and requirements, respectively,
and App. D describes several additional examples of useful models and require-
ments. Section 5 presents modularity lemmas. Section 6 shows how to apply
MoSS to two different applications, a simplified authenticated broadcast proto-
col, further described in App. C, and PKI schemes. Section 7 describes extensions
of the framework to achieve concrete security and to ensure polytime interac-
tions, with additional details in App. B. We conclude and discuss future work
in Section 8.

2 Execution Process

A key aspect of MoSS is the separation of the execution process from the model
M under which a protocol P is analyzed, and the requirements R that define P’s
goals. This separation allows different model assumptions using the same execu-
tion process, simplifying the analysis and allowing reusability of definitions and
results. In this section, we present MoSS’s execution process, which defines the
execution of a given protocol P ‘controlled’ by a given adversary A. We say that
it is ‘adversary-driven’ since the adversary controls all inputs and invocations of
the entities running the protocol.

4 Crossly-simplified PKI ideal functionalities were studied, e.g., in [21], but without
considering even basic aspects such as revocation and expiration.



2.1 Execg,p: An Adversary-Driven Execution Process

The execution process Exec 4 p(params), as defined by the pseudo-code in Al-
gorithm 1 and illustrated in Fig. 2 (see also a more elaborate illustration in
Fig. 3 in App. A), specifies the details of running a given protocol P with a
given adversary A, both modeled as efficient (PPT) functions, given parameters
params. Note that the model M is not an input to the execution process; it is
only applied to the transcript 1" of the protocol run produced by Exec4 p, to
decide if the adversary adhered to the model, in effect restricting the adversary’s
capabilities. Exec 4 p allows the adversary to have an extensive control over the
execution; the adversary decides, at any point, which entity is invoked next, with
what operation and with what inputs.

Parties
et - -
(VieN): (VieN): Opr; Sent,
params.Pi] i inp, clk Sent; Ot
Exec

params

Initialize
I
adversary

Initialize
parties

Receive Execute
. p . ) No ——
instruction instruction out 4,e,N, F,
i ent[],oprl ], inpl],

Yes T« clk[], T[], out[],
ptllramsbpt[-] s
N, s4, ent, L inp, s, sYuE
params pa’r'a’n:ﬁPH SA en 'C{ZIZTT”L‘D s, out sa,out 4, F (] [

Fig.2: A high level overview of MoSS’s execution process showing the interac-
tions between the parties to the protocol and the adversary in Exec 4 p. (Note:
e, in the final execution transcript 7', is the total number of iterations of the
loop.)

Notation. To allow the execution process to apply to protocols with mul-
tiple functions and operations, we define the entire protocol P as a single PPT
algorithm and use parameters to specify the exact operations and their inputs.
Specifically, to invoke an operation defined by P over some entity i, we use the
following notation: Plopr](s,inp, clk), where opr identifies the specific ‘opera-
tion’ or ‘function’ to be invoked, s is the local state of entity i, inp is the set
of inputs to opr, and clk is the value of the local clock of entity i. The output
of such execution is a tuple (', out), where s’ is the state of entity i after the
operation is executed and out is the output of the executed operation, which
is made available to the adversary. We refer to P as an ‘algorithm’ (in PPT)
although we do not consider the operation as part of the input, i.e., formally,
P maps from the operations (given as strings) to algorithms; this can be inter-



preted as P accepting the ‘label’ as additional input and calling the appropriate
‘subroutine’, making it essentially a single PPT algorithm.

Algorithm 1 uses the standard index notation to refer to cells of arrays. For
example, out[e] refers to the value of the et® entry of the array out. Specifically,
e represents the index (counter) of execution events. Note that e is never given
to the protocol; every individual entity has a separate state, and may count
the events that it is involved in, but if there is more than one entity, an entity
cannot know the current value of e - it is not a clock. Even the adversary does
not control e, although, the adversary can keep track of it in its state, since it is
invoked (twice) in every round. Clocks and time are handled differently, as we
now explain.

In every invocation of the protocol, one of the inputs set by the adversary
is referred to as the local clock and denoted clk. In addition, in every event,
the adversary defines a value 7 which we refer to as the real time clock. Thus,
to refer to the local clock value and the real time clock value of event e, the
execution process uses clk[e] and 7[e], respectively. Both clk and 7 are included
in the transcript T'; this allows a model predicate to enforce different synchro-
nization models/assumptions - or not to enforce any, which implies a completely
asynchronous model.

Algorithm 1 Adversary-Driven Execution Process Execa p(params)

1: (sa,N,params.P[-]) < A['Init’](params) > Initialize A with params

2: Vi e N: s; < P[Init’] (L, params.P[i], L) > Initialize entities’ local states
3:e+0 > Initialize loop’s counter

4. repeat

5: e+e+1 > Advance the loop counter

A selects entity entle], opera-

6: " . ik » tion oprle], input inple], clock
(entle], opr(c]. inple], clkle], 7le]) « A(s) tion orrlel, input inple], clack

event e

7 st le] < Sentle] > Save input state

8: (Sent[e] ) OUt[e]) «— P [opr[e]] (Sent[e] 3 inp[e}, Clk‘[EJ)

9: sout[e] < Sentle] > Save output state
A decides when to terminate

10: (sa,outa,F) < A(sa,outle]) > the loop (outa # L), based on
outle]

11: until out 4 # L
12: T« (outA, e, N, F, ent[-], opr[-], inp[-], clk[], T[], out[-], params. P[], sT™[], sO“’f‘H)

13: Return T > OQutput transcript of run

Construction. The execution process (Algorithm 1) consists of three main
components: the initialization, main execution loop and termination.



Initialization (lines 1-3). In line 1, we allow the adversary to set their state
sS4, to choose the set of entities N, and to choose parameters params.P[i] for
protocol initialization for each entity ¢ € N. Note that each params.P[i] can
include all of the parameters params given to the execution process, some of
the parameters from params, or entirely different parameters, chosen by the
adversary; however, the allowed values of params.P[-] (including their relation
to params) can be restricted using models (see Sec. 3), since the values set by
the adversary are returned in the transcript T (lines 12-13). In line 2, we set the
initial state s; for each entity ¢ by invoking the protocol-specific ‘Init’ operation
with input params.P[i]; note that this implies a convention where protocols are
initialized by this operation - all other operations are up to the specific protocol.
The reasoning behind such convention is that initialization is an extremely com-
mon operation in many protocols; that said, protocols without initialization can
use an empty ‘Init’ operation and protocols with a complex initialization process
can use other operations defined in P in the main execution loop (lines 4-11), to
implement an initialization process which cannot be performed via a single ‘Init’
call. In line 3, we initialize e, which we use to index the events of the execution,
i.e., e is incremented by one (line 5) each time we complete one ‘execution loop’
(lines 4-11).

Main ezecution loop (lines 4-11). The execution process affords the adversary
A extensive control over the execution. Specifically, in each event e, A determines
(line 6) an operation oprle], along with its inputs, to be invoked by an entity
entle] € N. The adversary also selects 7[e], the global, real time clock value.
Afterwards, the event is executed (line 8). The entity’s input and output states
are saved in s'"[e] and s9%[e], respectively (lines 7 and 9), which allows models
to place restrictions on the states of entities.

In line 10, the adversary processes the output out[e] of the operation opr[e].
The adversary may modify its state s4, and outputs a value out 4; when out 4 #
1, the execution moves to the termination phase; otherwise the loop continues.

Termination (lines 12-13). Upon termination, the process returns the eze-
cution transcript T (line 13), containing the relevant values from the execution.
Namely, T contains the adversary’s output out 4, the index of the last event e,
the set of entities N, and the set of faulty entities F (produced in line 10), the val-
ues of ent[-], opr[],inp[-], clk[-], T[] and out[-] for all invoked events, the protocol
initialization parameters params.P[-] for all entities in N, and the entity’s input
state s/"[] and output state s°¥¢[-] for each event. We allow A to output F to
accommodate different fault modes, i.e., an adversary model can specify which
entities are included in F (considered ‘faulty’) which then can be validated using
an appropriate model.

2.2 The Extendable Execution Process

In Section 2.1, we described the design of the generic Exec 4 p execution process,
which imposes only some basic limitations. We now describe the extendable ex-
ecution process Execip, an extension of Exec 4 p, which provides additional



flexibility with only few changes to Exec 4 p. The extendable execution pro-
cess Execfi)»,;. allows MoSS to (1) handle different kinds of entity-corruptions
(described next) and (2) define certain other models/requirements, e.g., indis-
tinguishability requirements (Section 4.3); other applications may be found.

The Execf\’p execution process, as defined by the pseudo-code in Algo-
rithm 2, specifies the details of running a given protocol P with a given adversary
A, both modeled as efficient (PPT) functions, given a specific set of execution
operations X and parameters params. The set® X is a specific set of extra oper-
ations through which the execution process provides built-in yet flexible support
for various adversarial capabilities. For example, the set X' can contain functions
which allow the adversary to perform specific functionality on an entity, func-
tionality which the adversary cannot achieve via the execution of P. We detail
and provide concrete examples of such functionalities in Section 2.3.

Changes to the Exec 4 » execution process. In addition to the extensive
control the adversary had over the execution, the adversary now can decide not
only which entity is invoked next, but also whether the operation is from the set
X of execution operations, or from the set of operations supported by P; while
we did not explicitly write it, some default values are returned if the adversary
specifies an operation which does not exist in the corresponding set.

To invoke an operation defined by P over some entity i, we use the same
notation as before, but the output of such execution contains an additional
output value sec-out, where sec-out[e][-] is a ‘secure output’ - namely, it contains
values that are shared only with the execution process itself, and not shared with
the adversary; e.g., such values may be used, if there is an appropriate operation
in X, to establish a ‘secure channel’ between parties, which is not visible to A.
In sec-out, the first parameter denotes the specific event e in which the secure
output was set; the second one is optional, e.g., may specify the ‘destination’ of
the secure output. Similarly, & is also defined as a single PPT algorithm and we
use a similar notation to invoke its operations: X[opr|(sx, s, inp, clk, ent), where
opr, s,inp, clk are as before, and sy is the execution process’s state and ent is
an entity identifier.

Construction. The extended execution process (Algorithm 2) consists of the
following modifications. The initialization phase (lines 1-4) has one additional
line (line 3), where we initialize the ‘execution operations state’ sy; this state is
used by execution operations (in &), allowing them to be defined as (stateless)
functions. Note that any set of execution operations X" is assumed to contain an
‘Init’ operation, and we may omit the ‘Init’ operation from the notation when
specifying X’; if it is omitted, the ‘default’ ‘Init’ operation is assumed, which
simply outputs (params,params.P[-]). The rest of the initialization lines are
the same.

The main execution loop (lines 5-16) is as before, but with one difference,
where the adversary A determines in line 7 the type of operation typele] to
be invoked by an entity ent[e] € N. The operation type typele] € {‘X’, ‘P’}

5 We use the term ‘set’, but note that X is defined as a single PPT algorithm, similarly
to how P is defined.

10



Algorithm 2 Extendible Adversary-Driven Execution Process Exec? ;(params)

1: (sa,N,params.P[-]) < A['Init’](params) > Initialize A with params

2: Vi e N: s; + P[Init’] (L, params.P[i], L) > Initialize entities’ local states
3: sx + X[‘Init’](params, params.P[-]) > Initial exec state

4: e+ 0 > Initialize loop’s counter

5: repeat

6 e<—e+1 > Advance the loop counter

A selects entity entle], opera-

. (entle], oprlel, typelel, inplel, clkle] 7le]) « A(sa) o lon oprlelinput inple], clock
clkle], and real time T[e] for
event e
8: s le] « Sentle] > Save input state
. . (o If A chose to invoke an oper-
9: if type[e] = ‘X’ then D otion from V.
10: (sx) Sent[e]s outle], sec-outle][]) + X [oprle]] (sx, Sentle]s inple], clk[e], ent[e])
11: else > A chose to invoke an opera-
: tion from P.
12: (Semtier outlel, sec-outle][]) P [oprlel] (semsier, inplel, clkle])
13: end if
14: sOUte] Sentle] > Save output state
A decides when to terminate
15: (sa,outa,F) < A(sa,outle]) > the loop (outs # 1), based on
outle]

16: until out 4 # L

17: T « (outA7 e, N, F, ent[-], opr[-], type[-], inp[-], clk[-], T[], out[], params. P[], sin 1, gOut [, sec—out[~][~])

18: Return T > Output transcript of run

indicates if the operation opr|e] is protocol-specific (defined in P) or is it one of
the execution process operations (defined in X). (If typele] ¢ {‘X’, “P’}, then the
execution process assumes that the operation is protocol-specific.) Afterwards,
the event is executed (lines 9-12) through the appropriate algorithm, based on
the operation type, either X, if typele] = ‘X7, or P otherwise.

The termination phase (lines 17-18) is the same as before, but also includes in
the transcript the type[-] values and the sec-out[-][-] for all invoked events. Private
values, such as entities’ private keys, are not part of the execution transcript
unless they were explicitly included in the output due to an invocation of an
operation from X that would allow it.

Note: We assume that X' operations are always defined such that whenever
X is invoked, it does not run A4 and only runs P at most once (per invocation
of X). Also, in lines 7 and 15, the operation to A is not explicitly written in
the pseudo-code. We assume that in fact nothing is given to A for the operation

11



(length 0) - this implies that A will not be re-initialized during the execution
process.

2.3 Using X to Define Specification and Entity-Faults Operations

The ‘default’ execution process is defined by an empty X set. This provides the
adversary A with Man-in-the-Middle (MitM) capabilities, and even beyond: A
receives all outputs, including messages sent, and controls all inputs, including
messages received; furthermore, A controls the values of the local clocks. A
non-empty set X can be used to define specification operations and entity-fault
operations; let us discuss each of these two types of execution process operations.

Specification operations. Some model and requirement specifications re-
quire a special execution process operation, possibly involving some information
which must be kept private from the adversary. One example are indistinguisha-
bility requirements, which are defined in Sec. 4.3.1 using three operations in
X: ‘Flip’, ‘Challenge’ and ‘Guess’, whose meaning most readers can guess (and
confirm the guess in Sec. 4.3.1).

The ‘Sec-in’ X-operation. As a simple example of a useful specification op-
eration, we now define the ‘Sec-in’ operation, which allows the execution process
to provide a secure input from one entity to another, bypassing the adversary’s
MitM capabilities. This operation can be used for different purposes, such as to
assume secure shared-key initialization - for example, see App. C.2. We define
the ‘Sec-in’ operation in Equation 1.5

X[‘Sec-in’] (sx, s, €, clk, ent) = [sx||P[‘Sec-in’] (s, sec-out[e'][ent], clk)] (1)

As can be seen, invocation of the ‘Sec-in’ operation returns the state sy un-

changed (and unused); the other outputs are simply defined by invoking the

‘Sec-in’ operation of the protocol P, with input sec-out[e][ent] - the sec-out

output of the event ¢’ intended for entity ent.

Note, that although ‘Sec-in’ facilitates delivery of data from some entity
to another while ensuring that the adversary is unable to access this data, it
does not provide authentication, namely, the receiving entity cannot rely on the
authenticity of the inputted data.

Entity-fault operations. It is quite easy to define X-operations that facili-
tate different types of entity-fault models, such as honest-but-curious, byzantine
(malicious), adaptive, proactive, self-stabilizing, fail-stop and others. Let us give
informal examples of three fault operations:

‘Get-state’: provides A with the entire state of the entity. Assuming no other
entity-fault operation, this is the ‘honest-but-curious’ adversary; note that
the adversary may invoke ‘Get-state’ after each time it invokes the entity, to
know its state all the time.

‘Set-output’: allows A to force the entity to output specific values. A ‘Byzan-
tine’ adversary would use this operation whenever it wants the entity to
produce specific output.

% We use = to mean ‘is defined as’.

12



‘Set-state’: allows A to set any state to an entity. For example, the ‘self-
stabilization’ model amounts to an adversary that may perform a ‘Set-state’
for every entity (once, at the beginning of the execution).

See discussion in App. D.1.2; and an example: use of these ‘fault operations’ to

define the threshold security model MIFIS/ assumed by many protocols.

Comments. Defining these aspects of the execution in X', rather than having
a particular choice enforced as part of the execution process, provides significant
flexibility and makes for a simpler execution process.

Note that even when the set X is non-empty, i.e., contains some non-default
operations, the adversary’s use of these operations may yet be restricted for the
adversary to satisfy a relevant model. We present model specifications in Sec. 3.

The operations in X are defined as (stateless) functions. However, the exe-
cution process provides state sy that these operations may use to store values
across invocations; the same state variable may be used by different operations.
For example, the ‘Flip’, ‘Challenge’ and ‘Guess’ X-operations, used to define
indistinguishability requirements in Sec. 4.3.1, use sy to share the value of the
bit flipped (by the ‘Flip’ operation).

3 Models

The execution process, described in Sec. 2, specifies the details of running a
protocol P against an adversary A which has an extensive control over the
execution. In this section, we present two important concepts of MoSS: a model
M, used to define assumptions about the adversary and the execution, and
specifications (m, B). We use specifications’ to define both models (in this section)
and requirements (in Sec. 4).

A MoSS (model/requirement) specification is a pair of functions (7, 3), where
7(T, params) is called the predicate (and returns T or L) and S(params) is the
base (probability) function (and evaluates to values from 0 to 1). The predicate 7
is applied to the execution-transcript 1" and defines whether the adversary ‘won’
or ‘lost’. The base function 3 is the ‘inherent’ probability of the adversary ‘win-
ning’; it is often simply zero (8(x) = 0), e.g., for forgery in a signature scheme,
but sometimes a constant such as half (for indistinguishability specifications) or
a function such as 27! (e.g., for I-bit MAC) of the parameters params.

A MoSS model is defined as a set of (one or more) specifications, i.e., M =
{(m1,51),-..}. When the model contains only one specification, we may abuse
notation and write M = (7, §) for convenience.

For example, consider a model M = (7, 0). Intuitively, adversary A satisfies
model (7,0), if for (almost) all execution-transcripts T of A, predicate 7 holds,
i.e.: (T, params) = T, where params are the parameters used in the execution
process (Sec. 3.1). One may say that the model ensures that the (great) power
that the adversary holds over the execution is used ‘with great responsibility’.

" We use the term ‘specification’ to refer to a component of a model (or of a require-
ment - see Sec. 4). This is not to be confused with ‘security specification’, which we
use to mean a model, requirement, and specific execution process.

13



The separation between the execution process and the model allows to use the
same - relatively simple - execution process for the analysis of many different
protocols, under different models (of the environment and adversary capabili-
ties). Furthermore, it allows to define multiple simple models, each focusing on
a different assumption or restriction, and require that the adversary satisfy all
of them.

As depicted in Figure 1, the model captures all of the assumptions regarding
the environment and the capabilities of the adversary, including aspects typically
covered by the (often informal) communication model, synchronization model
and adversary model:

Adversary model: The adversary capabilities such as MitM vs. eavesdropper,
entity corruption capabilities (e.g., threshold or proactive security), compu-
tational capabilities and more.

Communication model: The properties of the underlying communication mech-
anism, such as reliable or unreliable communication, FIFO or non-FIFO,
authenticated or not, bounded delay, fixed delay or asynchronous, and so
on.

Synchronization model: The availability and properties of per-entity clocks.
Common models include purely asynchronous clocks (no synchronization),
bounded-drift clocks, and synchronized or syntonized clocks.

The definitions of models and their predicates are often simple to write and

understand - and yet, reusable across works.

In Sec. 3.1, we define the concept of a specification. In Sec. 3.2, we define the
notion of a model-satisfying adversary. Finally, in Sec. 3.3, we give an example
of a model. Additional examples of models are given later in this paper, mainly
in D.1.

3.1 Specifications

We next define the specification, used to define both models and requirements.

A specification is a pair (7, 8), where 7 is the specification predicate and 8
is the base function. A specification predicate is a predicate whose inputs are
execution transcript 7' and parameters params. When 7 (T, params) = T, we
say that execution satisfies the predicate 7 for the given value of params. The
base function gives the ‘base’ probability of success for an adversary. For integrity
specifications, e.g. forgery, the base function is often either zero or 27!, where
[ is the output block size; and for indistinguishability-based specifications (see
Sec. 4.3), the base function is often 1.

We next define the advantage® of adversary A against protocol P for specifi-
cation predicate 7 using execution operations X', as a function of the parameters
params. This is the probability that 7(T, params) = L, for the transcript T’ of
a random execution: T' < Execi{,p (params).

8 Note that the advantage of A is the total probability of A winning, i.e., it does not
depend on a base function.

14



Definition 1 (Advantage of adversary A against protocol P for spec-
ification predicate 7 using execution operations X). Let A, P, X be al-
gorithms and let w be a specification predicate. The advantage of adversary A
against protocol P for specification predicate m using execution operations X is
defined as:

€ p.x (params) p. | ™ (T, params) = L, where

(2)

T «+ Execfi,p (params)

3.2 Model-Satisfying Adversary

Models are sets of specifications, used to restrict the capabilities of the adversary
and the events in the execution process. This includes limiting of the possible
faults, defining initialization assumptions, and defining the communication and
synchronization models. We check whether a given adversary A followed the
restrictions of a given model M in a given execution by examining whether a
random transcript 7" of the execution satisfies each of the model’s specification
predicates. Next, we define what it means for adversary A to poly-satisfy model
M using execution operations X.

Definition 2 (Adversary A poly-satisfies model M using execution op-
erations X). Let A,X € PPT, and let M be a set of specifications, i.e.,
M = {(m1,51),...}. We say that adversary A poly-satisfies model M using

. . x .
execution operations X, denoted A |:pn,y/\/l, if for every protocol P € PPT,
params € {0,1}*, and specification (w,B) € M, the advantage of A against
P for m using X is at most negligibly greater than B(params), i.e.:

AR (VP € PPT, params € {0,1}", (m, 3) € M) : 3
o €. p.x(params) < B(params) + Negl(|params|)

3.3 Example: the Bounded-Clock-Drift Model MRt

To demonstrate a definition of a model, we present the Mgrf: model, defined
as MRt — (7R () The predicate 73" bounds the clock drift, by enforcing
two restrictions on the execution: (1) each local-clock value (clk[é]) must be
within Agy drift from the real time 7[ée], and (2) the real time values should
be monotonically increasing. As a special case, when A, = 0, this predicate
corresponds to a model where the local clocks are fully synchronized, i.e., there

is no difference between entities’ clocks. See Algorithm 3.

15



Algorithm 3 The nglfl:: (T, params) predicate, used by the MB‘Z& = (W3r~izflz ,0) model

1: return (

2: vee{l,...,Te}: > For each event

Local clock is within A.yp drift
from real time

3: |T.clk[e] — T.r[e]| < Ak

In each consecutive event, the
4: and if & > 2then T.7[e] > T.7[e—1] > real time difference is monoton-
ically increasing

4 Requirements

In this section we define and discuss requirements. Like a model, a requirement
is a set of specifications R = {(m1, 51), .- .}. When the requirement contains only
one specification, we may abuse notation and write R = (, 8) for convenience.
Each requirement specification (w, ) € R includes a predicate (r) and a base
function (8). A requirement defines one or more properties that a protocol aims
to achieve, e.g., security, correctness or liveness requirements. By separating
between models and requirements, MoSS obtains modularity and reuse; different
protocols may satisfy the same requirements but use different models, and the
same models can be reused for different protocols, designed to satisfy different
requirements.

The separation between the definition of the model and of the requirements
also allows definition of generic requirement predicates., which are applicable to
protocols designed for different tasks, which share some basic goals. We identify
several generic requirement predicates that appear relevant to many security
protocols. These requirement predicates focus on attributes of messages, i.e.,
non-repudiation, and on detection of misbehaving entities (see Appendix D.2).

4.1 Model-Secure Requirements

We next define what it means for a protocol to satisfy a requirement under
some model. First, consider a requirement R = (r, 8), which contains just one
specification, and let b be the outcome of 7 applied to (T, params), where T is
a transcript of the execution process (T = Exec’y p(params)) and params are
the parameters, i.e., b < (T, params); if b = L then we say that requirement
predicate m was not satisfied in the execution of P, or that the adversary won in
this execution. If b = T, then we say that requirement predicate m was satisfied
in this execution, or that the adversary lost.

We now define what it means for P to poly-satisfy R under model M using
execution operations X.

Definition 3 (Protocol P poly-satisfies requirement R under model M
using execution operations X). Let P, X € PPT, and let R be a set of spec-
ifications, i.e., R = {(m1,B1),...}. We say that protocol P poly-satisfies require-
ment R under model M using execution operations X, denoted P j:M’X R, if for

poly

16



every PPT adversary A that poly-satisfies M using execution operations X, ev-
ery parameters params € {0,1}*, and every specification (7, 3) € R, the advan-
tage of A against P for m using X is at most negligibly greater than 5(params),
1.e.:

p M g i (Y A€ PPT st. A E, M, params € {0,1}*, (,8) € R) :
" € p x(params) < B(params) + Negl(|params|)

(4)

4.2 Example: the No False Accusations Requirement Ryga

Intuitively, the No False Accusations (NFA ) requirement Rypa states that a non-
faulty entity a ¢ F would never (falsely) accuse of a fault another non-faulty
entity, b € F. It is defined as Rnea = (7nea, 0). To properly define the mnra
requirement predicate, we first define a convention for one party, say a € N, to
output an Indicator of Accusation, i.e., ‘accuse’ another party, say iy € N, of a
fault. Specifically, we say that at event €4 of the the execution, entity ent[é ]
accuses entity i, if out[é4] is a triplet of the form (TA,én,x). The last value
in this triplet, z, should contain the clock value at the first time that ent[é]
accused 7y;; we discuss this in App. D as the value x is not relevant for the
requirement predicate, and is just used as a convenient convention for some
protocols.

The No False Accusations (NFA) predicate myga checks whether the adver-
sary was able to cause one honest entity, say Alice, to accuse another honest
entity, say Bob (i.e., both Alice and Bob are in N—F). Namely, mnea (T, params)
returns L only if T.outle] = (TA, j, z), for some j € T.N, and both j and T.ent|e]
are honest (i.e., j, T.entle] € T.N — T.F).

Algorlthm 4 No False Accusations Predicate 7nea (T, params)

1: return ﬁ(
2: T.ent[T.e] € T.N-T.F > T.ent[T.e] is an honest entity
3: and 3j € TN—-T.F,z s.t. (IA,j,z) € T-out[T.e] > T.ent[T.c] accused an honest entity

)

4.3 Supporting Confidentiality and Indistinguishability

The MoSS framework supports specifications for diverse goals and scenarios.
We demonstrate this by showing how to define ‘indistinguishability game’-based
definitions, i.e., confidentiality-related specifications.

4.3.1 Defining Confidentiality-Related Operations
To support confidentiality, we define the set X to include the following three

operations: ‘Flip’, ‘Challenge’, ‘Guess’.

17



— ‘Flip’: selects a uniformly random bit sx.b via coin flip, i.e., sx.b <& {0, 1}.

— ‘Challenge’: executes a desired operation with one out of two possible inputs,
according to the value of sy.b. Namely, when A outputs oprle] = ‘Challenge’,
the execution process invokes:

Plinple].opr] (Sent(e) inple].inplsx.b], clkle])

where inple].opr € P (one of the operations in P) and inple].inp is an ‘array’
with two possible inputs, of which only one is randomly chosen via sx.b,
hence, the inple].inp[sx.b] notation.

— ‘Guess’: checks if a ‘guess bit’, which is provided by the adversary as input,
is equal to sx.b, and returns the result in sec-out[e]. The result is put in
sec-out to prevent the adversary from accessing it.

These three operations are used as follows. The ‘Flip’ operation provides
Exec with access to a random bit sy.b that is not controlled or visible to A.
Once the ‘Flip’ operation is invoked, the adversary can choose the ‘Challenge’
operation, i.e., type[e] = X and opr[e] = ‘Challenge’, and can specify any opera-
tion of P it wants to invoke (inple].opr) and any two inputs it desires (inp[e].inp).
However, Exec will invoke P[inple].opr] with only one of the inputs, according
to the value of the random bit sx.b, i.e., inple].inp[sx.b]; again, since A has
no access to sy.b, A neither has any knowledge about which input is selected
nor can influence this selection. (As usual, further assumptions about the inputs
can be specified using a model.) Then, A can choose the ‘Guess’ operation and
provide its guess of the value of sy.b (0 or 1) as input.

4.3.2 The Generic Indistinguishability Requirement Ry and the

TTMsgConf

Message Confidentiality Requirement R 3

To illustrate how the aforementioned operations can be used in practice, we
define the indistinguishability requirement Ry, as Riyp = (IND™, 1), where
the IND™ predicate is shown in Algorithm 5. IND™ checks that the adversary
invoked the ‘Guess’ operation during the last event of the execution and examines
whether the ‘Guess’ operation outputted T in its secure output and whether
the m model was satisfied. The adversary ‘wins’ against this predicate when it
guesses correctly during the ‘Guess’ event. Since an output of L by a predicate
corresponds to the adversary ‘winning’ (see, e.g., Def. 1), the IND™ predicate
returns the negation of whether the adversary guessed correctly during the last
event of the execution. The base function of the Ry, requirement is 1, because
the probability that the adversary guesses correctly should not be significantly

more than % .

18



Algorithm 5 IND™ (T, params) Predicate

1: return —|(

2:
3:
4:

T.type[T.e] = ‘X’
and T.opr[T.e] = ‘Guess’ and T.sec-out[T.e] = T

and w (T, params)

)

The last event is a ‘Guess’ event
and A guessed correctly

> The model predicate m was met

We can use IND”™ to define more specific requirements; for example, we

use the Tusgcont predicate (Algorithm 6) to define Rpyse™ = (IND™scort 1),
which defines message confidentiality for an encrypted communication protocol.
Namely, assume P is an encrypted communication protocol, which includes the
following two operations: (1) a ‘Send’ operation which takes as input a message
m and entity ig and outputs an encryption of m for ig, and (2) a ‘Receive’
operation, which takes as input an encrypted message and decrypts it.

The musgcons Specification predicate (Algorithm 6) ensures that:

— A only asks for ‘Send’ challenges (since we are only concerned with whether

or not A can distinguish outputs of ‘Send’).

— During each ‘Send’ challenge, A specifies two messages of equal length and
the same recipient in the two possible inputs. This ensures that A does not

distinguish the messages based on their lengths.

— A does not use the ‘Receive’ operation at the challenge receiver receiving
from the challenge sender to decrypt any output of a ‘Send’ challenge.

Algorlthm 6 TmsgConf (T, params) Predicate

1: return (
ve € {1,...,T.e} s.t. T.type[e] = ‘X’ and T.opr[e] = ‘Challenge’:

2:

3
4:
5

2

T.inp[é].opr = ‘Send’
and |T.inp[e].inp[0].m| = |T.inp[e].inp[1].m|
and 3 ig,ir € T.N s.t.
T.inple].inp[0].ir = T.inp[e].inp[l].ir = ir
and T.entle] = ig
and 7 &’ s.t. T.opr[¢’] = ‘Receive’
and T.inp[é'].c = T.out[e].c
and T.ent[¢'] = ir

and T.inp[é/].is = is

v

v

v

v

v

v

Every ‘Challenge’ event is for
‘Send’ operation

Messages have equal length

There is one specific sender ig
and one specific receiver ip

ip is the recipient for both mes-
sages

ig5 18 the sender

. ( . Y
There is no ‘Receive’ event é

Where A uses decrypts the out-
put of the challenge

19



5 Modularity Lemmas

MoSS models and requirements are defined as sets of specifications, so they
can easily be combined by simply taking the union of sets. There are some
intuitive properties one expects to hold for such modular combinations of models
or requirements. In this section we present the model and requirement modularity
lemmas, which essentially formalize these intuitive properties. The lemmas can
be used in analysis of applied protocols, e.g., to allow a proof of a requirement
under a weak model to be used as part of a proof of a more complex requirement
which holds only under a stronger model. We believe that they may be helpful
when applying formal methods, e.g., for automated verification and generation
of proofs.

In this section, we present the asymptotic security lemmas; the (straightfor-
ward) proofs of the asymptotic security lemmas are in App. E. The concrete
security lemmas and their proofs are in App. F.

In the following lemmas, we describe model M as stronger than a model
M (and M as weaker than M) if M includes all the specifications of M, i.e.,
M C M. Similarly, we say that a requirement R is stronger than a requlrement
R (and R is weaker than R) if R includes all the specifications of R, i.c., R C R.
Basically, stronger models enforce more (or equal) constraints on the adversary
or other assumptions, compared to weaker ones, while stronger requirements
represent more (or equal) properties achieved by a protocol or scheme, compared
to weaker ones.

5.1 Asymptotic Security Model Modularity Lemmas

The model modularity lemmas give the relationships between stronger and weaker
models. They allow us to shrink stronger models (assumptions) into weaker ones
and to expand weaker models (assumptions) into stronger ones as needed - and
as intuitively expected to be possible.

The first lemma is the model monotonicity lemma (asymptotic security). It
shows that if an adversary A satisfies a stronger model M , then A also satisfies
any model that is weaker than M.

L